
Netcool/Impact
Version 6.1.1.5

DSA Reference Guide

SC27-4852-01

IBM

Netcool/Impact
Version 6.1.1.5

DSA Reference Guide

SC27-4852-01

IBM

Note
Before using this information and the product it supports, read the information in “Notices”.

Edition notice

This edition applies to version 6.1.1.5 of IBM Tivoli Netcool/Impact and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2006, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

DSA Reference Guide vii
Intended audience vii
Publications vii

Netcool/Impact library vii
Accessing terminology online vii
Accessing publications online viii
Ordering publications viii

Accessibility viii
Tivoli technical training viii
Support for problem solving ix

Obtaining fixes ix
Receiving weekly support updates ix
Contacting IBM Software Support x

Conventions used in this publication xii
Typeface conventions xii
Operating system-dependent variables and paths xii

Chapter 1. DSAs overview 1

Chapter 2. Data source adapters (DSA) 3
Categories of DSAs 3

Mediator DSAs 3
Managing data models 4
Event readers 4
Event listeners 4
Policies 5
Working with SQL database DSAs 5

List of provided SQL database DSAs 5
Adding JDBC drivers and third-party JAR files to
the shared library. 9
Changing the character set encoding for the
database connection 10
SQL database data model. 10
SQL database policies 11
SQL database DSA failover 15

Chapter 3. Working with the UI data
provider DSA 19
UI data provider data model 19

UI data provider data sources 19
UI data provider data types 20
Viewing data items for a UI data provider data
type 20
Using the GetByFilter function to handle large
data sets 21

Retrieving data from a UI provider data source . . 23
Creating custom schema values for output
parameters 26

UI data provider operators 27

Chapter 4. Working with the LDAP DSA 29
LDAP DSA overview 29
Supported LDAP servers 29
LDAP data model 29

LDAP data sources 29
LDAP data types 30
LDAP data items 30

LDAP policies 31
Retrieving data from an LDAP data source 31
International character support 32

Chapter 5. Working with the web
services DSA 33
Web services DSA overview 33
Migrating web services DSA. 33
Compiling WSDL files 34

Obtaining WSDL files 34
Running the WSDL compiler script 35

Recompiling new and changed WSDL files 35
Compiling WSDL files on Windows platforms . . . 36
Web services DSA functions 36

WSSetDefaultPKGName 37
WSNewObject 37
WSNewSubObject 38
WSNewArray 39
WSInvokeDL 39
WSNewEnum 41

Writing Web services DSA policies. 42
Sending messages 42
Examples using web services DSA functions . . 43

Web services listener 45
Web services listener process 45
WSDL file 45

Setting up the web services listener 45
Writing web services listener policies 46

Runtime parameters 46
WSListenerResult 46

Writing applications that call into Web services . . 47
SOAP endpoint 47
Authentication for the web services listener . . 48
WSDL file 48

Creating policies by using the web services wizard 50
Creating policies by using policy editor 51
Sample policy and sample client 51
Integration with third-party web services 53

Chapter 6. Web services security . . . 55
Enabling web services security 55
Creating a web service policy using web service
security. 56
User name token authentication 59
User name token authentication with a plain text
password 59
Message integrity and non-repudiation with
signature 60
Encryption 60
Sign and encrypt messages 61

© Copyright IBM Corp. 2006, 2014 iii

Chapter 7. Working with web services
and WSDM 63
WSDM overview 63
Writing WSDM policies 63
WSDMGetResourceProperty 64
WSDMUpdateResourceProperty 65
WSDMInvoke 67

Chapter 8. Working with the JMS DSA 69
Supported JMS providers 69
Configuring JMS DSAs to send and receive JMS
messages 69
Setting up OpenJMS as the JMS provider 70
JMS data source 70

JMS data source configuration properties . . . 70
Specifying more JNDI properties for the JMS data
source 71

JMS message listener 72
JMS message listener service configuration
properties 72

Writing JMS DSA policies. 73
Sending messages to a JMS topic or queue . . . 74
Retrieving JMS messages from a topic or queue 77

Chapter 9. Working with the XML DSA 81
XML DSA overview 81
XML documents 81
XML DTD and XSD files 81
XML data types 81

Super data types 82
Element data types 82

XML configuration files 82
XML document and data type mapping 82
Creating XML data types 83
Create data types scripts 84
Data type mappings 85

Setting up mappings for XML files and strings 85
Setting up mappings for XML over HTTP . . . 86

Reading XML documents 87
Retrieving the document data item 87
Retrieving the root level element data item . . . 88
Retrieving child element data items 89
Accessing attribute values 89

Sample policies 89
XmlStringTestPolicy 89
XmlFileTestPolicy 90
XmlHttpTestPolicy 90
XmlXsdFileTestPolicy 91

Chapter 10. Working with IPL to XML
functions. 93
IPL to XML functions overview. 93
Creating the XML document object 94
Adding a sub element 94
Creating an unassociated element 95
Adding XML attributes to element objects, simple
approach 95
Adding XML attributes to element objects that use
Attribute objects 96

Adding XML attributes to element objects adding
attributes from an OrgNode 97
Adding the content to an XML element object . . . 97
Appending content to XML element objects . . . 98
Adding XML comments to element objects 98
Adding XML element objects to each other (nesting) 99
Generating XML strings from document objects . . 99
Replacement of default XML entities 100
Element ordering in XML 100
Examples of IPLtoXML functions usage 100

Chapter 11. Working with the SNMP
DSA 105
SNMP DSA overview. 105
SNMP data model 105

SNMP data sources 105
SNMP data types 106

SNMP DSA process 106
Sending data to agents 106
Retrieving data from agents 107
Sending traps and notifications to managers . . 107
Handling error conditions 107
Handling timeouts 107

Installing MIB files 107
Working with SNMP data sources 108

Creating SNMP data sources 108
Editing SNMP data sources. 109
Deleting an SNMP data source 110

Working with SNMP data types 110
Creating SNMP data types 110
Editing SNMP data types 112
Deleting SNMP data types 112

SNMP policies 112
Setting packed OID data with standard
data-handling functions 113
Setting packed OID data with SNMP functions 116
Retrieving packed OID data from SNMP agents 116
Retrieving table data from SNMP agents . . . 119
Sending SNMP traps and notifications 120

SNMP functions 121
SnmpGetAction 121
SnmpGetNextAction 125
SnmpSetAction 128
SnmpTrapAction 131

Chapter 12. Working with the ITNM
DSA 135
ITNM DSA overview 135
Setting up the DSA 135

Editing the DSA properties file 136
Running the ITNM event listener service for the
DSA 136

ITNM DSA data type. 137
ExtraInfo field 137

Writing policies using the ITNM DSA 138
GetByFilter 138
Writing policies to receive events from ITNM 140

Sample policies 140
ITNMSampleListenerPolicy. 140
ITNMSamplePolicy 140

iv Netcool/Impact: DSA Reference Guide

Chapter 13. Working with the socket
DSA 141
Socket DSA overview. 141
Socket server 141
Data model 141
Process 141
Setting up the socket DSA 141
Writing socket DSA policies 141
Using the sample socket server 142
Implementing a custom socket server 142
Socket DSA data model 142

Socket DSA data source 142
Socket DSA data types 142

Configuring the socket DSA 143
Writing socket DSA policies 143

Retrieving data by filter 143
Retrieving data by key 144
Retrieving data By links 145
Sending data 146

Working with the sample socket server 146
Setting up the sample socket server 146
Sample socket server components 147
Running the sample socket server 148
Testing the socket server. 149

Implementing a custom socket server 149
Creating a socket 150
Waiting for DSA connections 150
Performing handshaking with the DSA. . . . 150
Listening for operation requests from the socket
DSA 150
Requesting operation parameters from the
socket DSA 150
Performing operations requested by the DSA 152
Returning operation results to the DSA. . . . 152

Socket DSA and socket server connection state . . 152
Socket server threading 153

Chapter 14. Working with the Cramer
DSA 155
Cramer Dimension DSA overview 155
Files used with the Cramer Dimension DSA . . . 155
Setting up the Cramer Dimension DSA 156
Configuring Cramer System to use basic
authentication 157

Cramer Dimension data model 157
Cramer Dimension data source 157
Cramer Dimension data types 158

Cramer Dimension policies 158
Retrieving XML Data from Cramer Dimension 159
Using GetByLinks to traverse the XML data . . 160
Using the Embedded Linking Syntax to traverse
the XML data 161
Accessing XML element and attribute values 161

Sample Implementation 162
Updating the ObjectServer 162
Configuring Netcool/Impact 162
DSA for Cramer Dimension Standard Policies 163

Appendix A. Accessibility 167

Appendix B. Notices 169
Trademarks 171

Glossary 173
A 173
B 173
C 173
D 173
E 174
F 175
G 175
H 175
I. 175
J. 176
K 176
L 176
M 177
N 177
O 177
P 177
S 177
U 179
V 179
W 179
X 179

Index 181

Contents v

vi Netcool/Impact: DSA Reference Guide

DSA Reference Guide

The Netcool/Impact DSA Reference Guide contains information about Impact data
source adaptors (DSAs).

Intended audience
This publication is for users who are responsible for creating Netcool/Impact data
models and writing Netcool/Impact policies.

Publications
This section lists publications in the Netcool/Impact library and related
documents. The section also describes how to access Tivoli® publications online
and how to order Tivoli publications.

Netcool/Impact library
v Quick Start Guide, CF39PML

Provides concise information about installing and running Netcool/Impact for
the first time.

v Administration Guide, SC14755901
Provides information about installing, running and monitoring the product.

v User Interface Guide, SC27485101
Provides instructions for using the Graphical User Interface (GUI).

v Policy Reference Guide, SC14756101
Contains complete description and reference information for the Impact Policy
Language (IPL).

v DSA Reference Guide, SC27485201
Provides information about data source adaptors (DSAs).

v Operator View Guide, SC27485301
Provides information about creating operator views.

v Solutions Guide, SC14756001
Provides end-to-end information about using features of Netcool/Impact.

v Integrations Guide, SC27485401
Contains instructions for integrating Netcool/Impact with other IBM® software
and other vendor software.

v Troubleshooting Guide, GC27485501
Provides information about troubleshooting the installation, customization,
starting, and maintaining Netcool/Impact.

Accessing terminology online
The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/software/globalization/terminology

© Copyright IBM Corp. 2006, 2014 vii

http://www.ibm.com/software/globalization/terminology

Accessing publications online
Publications are available from the following locations:
v The Quick Start DVD contains the Quick Start Guide. Refer to the readme file on

the DVD for instructions on how to access the documentation.
v Tivoli Information Center web site at http://publib.boulder.ibm.com/infocenter/

tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc6.1.1/welcome.html. IBM posts
publications for all Tivoli products, as they become available and whenever they
are updated to the Tivoli Information Center Web site.

Note: If you print PDF documents on paper other than letter-sized paper, set
the option in the File → Print window that allows Adobe Reader to print
letter-sized pages on your local paper.

v Tivoli Documentation Central at http://www.ibm.com/tivoli/documentation.
You can access publications of the previous and current versions of
Netcool/Impact from Tivoli Documentation Central.

v The Netcool/Impact wiki contains additional short documents and additional
information and is available at https://www.ibm.com/developerworks/
mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact.

Ordering publications
You can order many Tivoli publications online at http://
www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss.

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss.
2. Select your country from the list and click Go.
3. Click About this site in the main panel to see an information page that

includes the telephone number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

For additional information, see Appendix A, “Accessibility,” on page 167.

Tivoli technical training
For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site at http://www.ibm.com/software/tivoli/education.

viii Netcool/Impact: DSA Reference Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc6.1.1/welcome.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc6.1.1/welcome.html
http://www.ibm.com/tivoli/documentation
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.ibm.com/software/tivoli/education

Support for problem solving
If you have a problem with your IBM software, you want to resolve it quickly. This
section describes the following options for obtaining support for IBM software
products:
v “Obtaining fixes”
v “Receiving weekly support updates”
v “Contacting IBM Software Support” on page x

Obtaining fixes
A product fix might be available to resolve your problem. To determine which
fixes are available for your Tivoli software product, follow these steps:
1. Go to the IBM Software Support Web site at http://www.ibm.com/software/

support.
2. Navigate to the Downloads page.
3. Follow the instructions to locate the fix you want to download.
4. If there is no Download heading for your product, supply a search term, error

code, or APAR number in the search field.

For more information about the types of fixes that are available, see the IBM
Software Support Handbook at http://www14.software.ibm.com/webapp/set2/sas/
f/handbook/home.html.

Receiving weekly support updates
To receive weekly e-mail notifications about fixes and other software support news,
follow these steps:
1. Go to the IBM Software Support Web site at http://www.ibm.com/software/

support.
2. Click the My IBM in the toobar. Click My technical support.
3. If you have already registered for My technical support, sign in and skip to

the next step. If you have not registered, click register now. Complete the
registration form using your e-mail address as your IBM ID and click Submit.

4. The Edit profile tab is displayed.
5. In the first list under Products, select Software. In the second list, select a

product category (for example, Systems and Asset Management). In the third
list, select a product sub-category (for example, Application Performance &
Availability or Systems Performance). A list of applicable products is
displayed.

6. Select the products for which you want to receive updates.
7. Click Add products.
8. After selecting all products that are of interest to you, click Subscribe to email

on the Edit profile tab.
9. In the Documents list, select Software.

10. Select Please send these documents by weekly email.
11. Update your e-mail address as needed.
12. Select the types of documents you want to receive.
13. Click Update.

If you experience problems with the My technical support feature, you can obtain
help in one of the following ways:

DSA Reference Guide ix

http://www.ibm.com/software/support
http://www.ibm.com/software/support
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/support
http://www.ibm.com/software/support

Online
Send an e-mail message to erchelp@u.ibm.com, describing your problem.

By phone
Call 1-800-IBM-4You (1-800-426-4409).

World Wide Registration Help desk
For word wide support information check the details in the following link:
https://www.ibm.com/account/profile/us?page=reghelpdesk

Contacting IBM Software Support
Before contacting IBM Software Support, your company must have an active IBM
software maintenance contract, and you must be authorized to submit problems to
IBM. The type of software maintenance contract that you need depends on the
type of product you have:
v For IBM distributed software products (including, but not limited to, Tivoli,

Lotus®, and Rational® products, and DB2® and WebSphere® products that run on
Windows or UNIX operating systems), enroll in Passport Advantage® in one of
the following ways:

Online
Go to the Passport Advantage Web site at http://www-306.ibm.com/
software/howtobuy/passportadvantage/pao_customers.htm .

By phone
For the phone number to call in your country, go to the IBM Worldwide
IBM Registration Helpdesk Web site at https://www.ibm.com/account/
profile/us?page=reghelpdesk.

v For customers with Subscription and Support (S & S) contracts, go to the
Software Service Request Web site at https://techsupport.services.ibm.com/ssr/
login.

v For customers with IBMLink, CATIA, Linux, OS/390®, iSeries, pSeries, zSeries,
and other support agreements, go to the IBM Support Line Web site at
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006.

v For IBM eServer™ software products (including, but not limited to, DB2 and
WebSphere products that run in zSeries, pSeries, and iSeries environments), you
can purchase a software maintenance agreement by working directly with an
IBM sales representative or an IBM Business Partner. For more information
about support for eServer software products, go to the IBM Technical Support
Advantage Web site at http://www.ibm.com/servers/eserver/techsupport.html.

If you are not sure what type of software maintenance contract you need, call
1-800-IBMSERV (1-800-426-7378) in the United States. From other countries, go to
the contacts page of the IBM Software Support Handbook on the Web at
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html and
click the name of your geographic region for phone numbers of people who
provide support for your location.

To contact IBM Software support, follow these steps:
1. “Determining the business impact” on page xi
2. “Describing problems and gathering information” on page xi
3. “Submitting problems” on page xi

x Netcool/Impact: DSA Reference Guide

https://www.ibm.com/account/profile/us?page=reghelpdesk
http://www-306.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www-306.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
https://www.ibm.com/account/profile/us?page=reghelpdesk
https://www.ibm.com/account/profile/us?page=reghelpdesk
https://www-946.ibm.com/support/servicerequest/relationship/nomination.action
https://www-946.ibm.com/support/servicerequest/relationship/nomination.action
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006
http://www.ibm.com/servers/eserver/techsupport.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Determining the business impact
When you report a problem to IBM, you are asked to supply a severity level. Use
the following criteria to understand and assess the business impact of the problem
that you are reporting:

Severity 1
The problem has a critical business impact. You are unable to use the
program, resulting in a critical impact on operations. This condition
requires an immediate solution.

Severity 2
The problem has a significant business impact. The program is usable, but
it is severely limited.

Severity 3
The problem has some business impact. The program is usable, but less
significant features (not critical to operations) are unavailable.

Severity 4
The problem has minimal business impact. The problem causes little impact
on operations, or a reasonable circumvention to the problem was
implemented.

Describing problems and gathering information
When describing a problem to IBM, be as specific as possible. Include all relevant
background information so that IBM Software Support specialists can help you
solve the problem efficiently. To save time, know the answers to these questions:
v Which software versions were you running when the problem occurred?
v Do you have logs, traces, and messages that are related to the problem

symptoms? IBM Software Support is likely to ask for this information.
v Can you re-create the problem? If so, what steps were performed to re-create the

problem?
v Did you make any changes to the system? For example, did you make changes

to the hardware, operating system, networking software, and so on.
v Are you currently using a workaround for the problem? If so, be prepared to

explain the workaround when you report the problem.

Submitting problems
You can submit your problem to IBM Software Support in one of two ways:

Online
Click Submit and track problems on the IBM Software Support site at
http://www.ibm.com/software/support/probsub.html. Type your
information into the appropriate problem submission form.

By phone
For the phone number to call in your country, go to the contacts page of
the IBM Software Support Handbook at http://www14.software.ibm.com/
webapp/set2/sas/f/handbook/home.html and click the name of your
geographic region.

If the problem you submit is for a software defect or for missing or inaccurate
documentation, IBM Software Support creates an Authorized Program Analysis
Report (APAR). The APAR describes the problem in detail. Whenever possible,
IBM Software Support provides a workaround that you can implement until the
APAR is resolved and a fix is delivered. IBM publishes resolved APARs on the
Software Support Web site daily, so that other users who experience the same
problem can benefit from the same resolution.

DSA Reference Guide xi

http://www.ibm.com/software/support/probsub.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Conventions used in this publication
This publication uses several conventions for special terms and actions, operating
system-dependent commands and paths, and margin graphics.

Typeface conventions
This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data.

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths
This publication uses the UNIX convention for specifying environment variables
and for directory notation.

When using the Windows command line, replace $variable with %variable% for
environment variables and replace each forward slash (/) with a backslash (\) in
directory paths. The names of environment variables are not always the same in
the Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

xii Netcool/Impact: DSA Reference Guide

Chapter 1. DSAs overview

DSAs are software components that are used to communicate with external data
sources. DSAs broker information to and from SQL databases, LDAP servers, JMS
topics and queues, and software systems that allow communication through web
services APIs. You also use DSAs also to parse XML strings and documents,
communicate with web servers through HTTP, and communicate with custom
applications through generic socket transactions.

© Copyright IBM Corp. 2006, 2014 1

2 Netcool/Impact: DSA Reference Guide

Chapter 2. Data source adapters (DSA)

Data source adapters (DSA) are software components that are used to
communicate with external data sources.

Categories of DSAs
There are the following categories of DSAs:

SQL database DSAs
SQL database DSAs are used to access information stored in SQL database
data sources. For more information about SQL database DSAs, see
“Working with SQL database DSAs” on page 5.

LDAP DSA
The LDAP DSA are used to access information stored in an LDAP server.
For more information about LDAP DSA, see Chapter 4, “Working with the
LDAP DSA,” on page 29.

Mediator DSAs
Mediator DSAs are used to communicate with various third-party
applications or generic data interfaces (such as a Web services API or
custom socket interfaces). For more information about Mediator DSAs, see
“Mediator DSAs.”

Mediator DSAs
Mediator DSAs are used to communicate with various third-party applications or
generic data interfaces (such as a Web services API or custom socket interfaces).

Some Mediator DSAs are built in DSAs and do not require any additional
installation or configuration. Other Mediator DSAs require you to manually install
and configure them.

Table 1 lists the provided built-in Mediator DSAs:

Table 1. Mediator DSAs

Mediator DSA For more information, see

Web services DSA Chapter 5, “Working with the web services DSA,” on page
33

JMS DSA Chapter 8, “Working with the JMS DSA,” on page 69

XML DSA Chapter 9, “Working with the XML DSA,” on page 81

SNMP DSA Chapter 11, “Working with the SNMP DSA,” on page 105

ITNM DSA Chapter 12, “Working with the ITNM DSA,” on page 135

Socket DSA Chapter 13, “Working with the socket DSA,” on page 141

The following Mediator DSAs are provided but you must install and configure
them independently of the application:
v Alcatel 5620 DSA
v GE Smallworld DSA
v Cramer DSA

© Copyright IBM Corp. 2006, 2014 3

For more information about these Mediator DSAs, see the Data Source Adapter
Reference Guide.

Managing data models
A data model is a model of the business data and metadata that is used in an
Netcool/Impact solution.

DSA (Data Source Adapter) data models are sets of data sources, data types, and
data items that represent information that is managed by the internal data
repository or an external source of data. For each category of DSA, the data model
represents different structures and units of data that are stored or managed by the
underlying source. For example, for SQL database DSAs, data sources represent
databases; data types represent database tables; and data items represent rows in a
database table.

The following DSAs; Web Services, SNMP, ITNM (Precision), XML, Cramer, and
Socket, store some of the configuration in the $IMPACT_HOME/dsa directory. In a
clustered environment, the $IMPACT_HOME/dsa directory will be replicated in the
secondary servers in a cluster from the primary server during startup.

If you are changing these directories and configurations, it is best to make these
changes on the primary server while the servers are down. When the changes are
complete, start primary server followed by the secondary servers in the cluster.
Some of the changes replicate in real time, for example if you use the Web Services
and XML wizards. There is also a directory, $IMPACT_HOME/dsa/misc, where you can
store scripts and flat files for example, which will be replicated across the cluster
during startup of secondary servers that are retrieving this data from the primary
server.

Event readers
Event readers are services that query a data source at intervals for events and then
run a policy based on the incoming event data.

Two types of event readers are provided: standard event readers and database
event readers. Standard event readers query a Netcool/OMNIbus ObjectServer
database using the ObjectServer DSA. Database event readers query other
relational databases using other types of SQL database DSAs

Event listeners
Event listeners are services that listen for incoming communication from an
external data source through a DSA.

Event listeners are implemented by certain DSAs that provide the means for
asynchronous exchange of data with the underlying sources of data. These DSAs
include the database listener service for some SQL database DSAs (such as the
Oracle DSA), OMNIbusEventListener for OMNIbus version 7.2 and later. They also
include other listeners for Web services, JMS, and ITNM.

4 Netcool/Impact: DSA Reference Guide

Policies
DSA policies are policies that contain instructions for interacting with a data source
using a DSA. These policies contain calls to data-handling functions (such as
GetByFilter) or DSA-specific functions that are instructions to send or retrieve
information to and from the external data sources.

Working with SQL database DSAs
SQL database DSAs (data source adapters) are used to retrieve information from
relational databases.

SQL database DSAs are also used to retrieve information from other types of data
sources (like Netcool/OMNIbus ObjectServers, character-delimited files), and data
sources that provide a public interface through JDBC (Java™ Database
Connectivity). They are also used to add, modify, and delete information stored in
these data sources.

The SQL database DSAs are direct-mode DSAs that run in-process with the Impact
Server. SQL database DSAs are built in DSAs and do not require installation or
configuration, but they require a JDBC driver to access data in the database. Only
these SQL database DSAs have JDBC drivers provided automatically with
Netcool/Impact:
v DB2
v Derby
v Informix
v HSQLDB
v ObjectServer
v Oracle
v PostgreSQL

Before you can use any other SQL database DSA, you must add its JDBC drivers to
the class path. For a detailed procedure, see “Adding JDBC drivers and third-party
JAR files to the shared library” on page 9.

You use SQL database DSAs by creating a data model, and writing policies. For
more information, see “SQL database data model” on page 10, and “SQL database
policies” on page 11.

List of provided SQL database DSAs
This topic provides a list, and a brief overview of SQL database DSAs.

Table 2. SQL database data source adapters

Data source adapter Description

DB2 DSA You use the DB2 DSA to access information in an IBM DB2
database. For more information about DB2 DSA, see “DB2 DSA” on
page 6.

Derby DSA The Derby DSA is used to access information in an Apache Derby
database. For more information about Derby DSA, see “Derby
DSA” on page 6.

Flat File DSA You use the Flat File DSA to read information in a
character-delimited text file. For more information about Flat File
DSA, see “Flat File DSA” on page 7.

Chapter 2. Data source adapters (DSA) 5

Table 2. SQL database data source adapters (continued)

Data source adapter Description

Generic SQL DSA You use the Generic SQL DSA to access information in any
database application through a JDBC driver. For more information
about Generic SQL DSA, see “Generic SQL DSA” on page 7.

HSQLDB DSA You use the HSQL DSA to access information in a HSQL database.
For more information about HSQL DSA, see “HSQLDB DSA” on
page 7.

Informix® DSA You use the Informix DSA to access information in an IBM Informix
database. For more information about Informix DSA, see “Informix
DSA” on page 7.

MySQL DSA You use the MySQL DSA to access information in a MySQL
database. For more information about MySQL DSA, see “MySQL
DSA” on page 7.

MS-SQL Server DSA You use the MS-SQL Server DSA to access information in a
Microsoft SQL Server database. For more information about
MS-SQL Server DSA, see “MS-SQL Server DSA” on page 7.

ObjectServer DSA You use the ObjectServer DSA to access information in the
Netcool/OMNIbus ObjectServer. For more information about
ObjectServer DSA, see “ObjectServer DSA” on page 8.

ODBC DSA Use the ODBC DSA to access information in an ODBC data base.
For more information about ODBC DSA, see “ODBC DSA” on page
8.

Oracle DSA You use the Oracle DSA to access information in an Oracle
database. For more information about Oracle DSA, see “Oracle
DSA” on page 8.

PostgreSQL DSA Use the PostgreSQL DSA to access information in a PostgreSQL
database. For more information about PostgreSQL DSA, see
“PostgreSQL DSA” on page 8.

Sybase DSA You use the Sybase DSA to access information in a Sybase database.
For more information about Sybase DSA, see “Sybase DSA” on
page 9.

DB2 DSA
You use the DB2 DSA to access information in an IBM DB2 database.

This DSA is used to retrieve, add, modify and delete information stored in DB2.

Derby DSA
Use the Derby DSA to access information in an Apache Derby database. The Derby
DSA is used to store the underlying data that is used by the GUI reporting tools
and Netcool/Impact solutions such as Maintenance Window Management.

You can also use the Apache Derby database to store other types of information
that is used by Netcool/Impact. Any policies that access or update the other types
of information sent to and from the Apache Derby database must be called by the
policy activator service. It is not recommend to use any of the multi-threaded
EventReaders.

The Derby DSA uses Apache Derby JDBC driver version 10.8.2.3. For more
information about Apache Derby, see this URL http://db.apache.org/derby/.

6 Netcool/Impact: DSA Reference Guide

http://db.apache.org/derby/

Flat File DSA
You use the Flat File DSA to read information in a character-delimited text file.

You cannot use the Flat File DSA to write information to a text file. The Flat File
DSA supports only the "AND" operator in flat file data type queries. You cannot
use the "OR" operator to work with flat file data types. The flat file data source can
be accessed like an SQL data source that uses standard SQL commands in
Netcool/Impact for example, DirectSQL. Use an SQL database to run more
complex queries. If you have to use the Flat File DSA, run multiple queries that do
not require the use of the "OR" operator.

Restriction: The Flat File DSA is intended for use in demonstrating and testing
Netcool/Impact and for infrequently accessing small amounts of data that is stored
in a text file. Use of text files and the Flat File DSA is not an effective substitute for
the use of a conventional relational database and an SQL database DSA. The Flat
File DSA offers slower performance when compared to other DSAs.

Generic SQL DSA
You use the Generic SQL DSA to access information in any database application
through a JDBC driver.

This DSA is used to retrieve, add, modify and delete information stored in the
database. To use the Generic SQL DSA, you must specify its JDBC driver in the
Generic SQL data source configuration window.

HSQLDB DSA
You use the HSQL DSA to access information in a HSQL database.

This DSA is supported with version 2.0 of the HSQL database server.

Informix DSA
You use the Informix DSA to access information in an IBM Informix database.

This DSA is used to retrieve, add, modify and delete information stored in the
database. The DSA is supported with version 9.x, 10.x, and 11.x of the Informix
database.

MS-SQL Server DSA
You use the MS-SQL Server DSA to access information in a Microsoft SQL Server
database.

This DSA is used to retrieve, add, modify, and delete information stored in the
database. It is used to run MS-SQL Server stored procedures. This DSA is
supported with MS-SQL Server 2005, and 2008.

To use this data source adapter obtain the Microsoft SQL Server 3.0 Type 4 JDBC
Driver, from this URL:

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=a737000d-68d0-
4531-b65d-da0f2a735707&displaylang=en

MySQL DSA
You use the MySQL DSA to access information in a MySQL database.

Chapter 2. Data source adapters (DSA) 7

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=a737000d-68d0-4531-b65d-da0f2a735707&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=a737000d-68d0-4531-b65d-da0f2a735707&displaylang=en

This DSA is used to retrieve, add, modify, and delete information stored in the
database. This DSA is supported with version 5.x of MySQL. To use this data
source adapter obtain the latest Connector/J JDBC driver, from this URL:

http://dev.mysql.com/doc/refman/5.5/en/connector-j-versions.html

ObjectServer DSA
You use the ObjectServer DSA to access information in the Netcool/OMNIbus
ObjectServer.

The ObjectServer DSA is supported by different versions of Netcool®/OMNIbus.
You can use the Software Product Compatibility Reports (SPCR) to see the specific
versions of Netcool/OMNIbus that are compatible with Netcool/Impact. To view a
predefined report that lists the prerequisites for Netcool/Impact, see Prerequisites
of Tivoli Netcool/Impact 6.1.1.

For more information about using SPCR, see Netcool Impact 6.1.1 system
requirements.

Note: Use of the ObjectServer DSA is not necessary for retrieving events from the
ObjectServer using the event reader server or for adding, updating, or deleting
events from within a policy using the ReturnEvent function.

ODBC DSA
Use the ODBC DSA to access information in an ODBC data base.

Oracle DSA
You use the Oracle DSA to access information in an Oracle database.

The Oracle DSA is used to retrieve, add, modify, and delete information that is
stored in the database. It is also used to run Oracle database stored procedures.
This DSA is supports versions 9i, 10g, and 11g of the Oracle database server.

The Oracle DSA uses JDBC driver version 11.2.0.1.0, which is provided
automatically in Netcool/Impact 6.1.1.5. You are not obliged to use JDBC driver
version 11.2.0.1.0. You can download appropriate drivers from the Oracle website.

Remember: If you have upgraded from Netcool/Impact 6.1 to Netcool/Impact
6.1.1.5 see the section Upgrading from Netcool/Impact 6.1, Post upgrade considerations
in the Netcool/Impact Administration Guide to verify that the Oracle JDBC JAR files
are in the correct shared library for your environment.

PostgreSQL DSA
Use the PostgreSQL DSA to access information in a PostgreSQL database.

Netcool/Impact uses this DSA to retrieve, add, modify, and delete information
stored in the database. This DSA is supported with versions 8.x and 9.x of the
PostgreSQL database.

The PostgreSQL DSA uses JDBC driver version 9.2-1002 JDBC4 which is provided
automatically in Netcool/Impact 6.1.1.5.

Remember: If you have upgraded from Netcool/Impact 6.1 to Netcool/Impact
6.1.1.5 see the section Upgrading from Netcool/Impact 6.1, Post upgrade considerations
to verify that the PostgreSQL JDBC JAR file is in the correct shared library for your
environment.

8 Netcool/Impact: DSA Reference Guide

http://dev.mysql.com/doc/refman/5.5/en/connector-j-versions.html
http://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/prereqsForProduct?deliverableId=1315218104926
http://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/prereqsForProduct?deliverableId=1315218104926
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Tivoli%20Netcool%20Impact/page/Netcool%20Impact%206.1.1%20system%20requirements
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Tivoli%20Netcool%20Impact/page/Netcool%20Impact%206.1.1%20system%20requirements

Sybase DSA
You use the Sybase DSA to access information in a Sybase database.

This DSA is used to retrieve, add, modify, and delete information stored in the
database. It is also used to run Sybase stored procedures. This DSA is supported
with version 15.x of the Sybase database server.

To use this data source adapter obtain the JDBC driver jConnect for JDBC version
6.0.5, from this URL:

http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect

Adding JDBC drivers and third-party JAR files to the shared
library

Use this procedure to add a JDBC driver or third-party Java archive (JAR) files to
the Netcool/Impact shared library.

About this task

You must copy the required JDBC drivers to the $IMPACT_HOME/dsalib directory.

You can also copy any third-party JAR files that you require to the same directory.
For example, if you have specific Java classes that you want use with Java policy
functions in Netcool/Impact, you add the JAR files to this directory.

Procedure
1. Obtain the appropriate JDBC driver according to the DSA specification or the

third-party JAR files.
2. Copy the JDBC driver or third-party JAR files to the $IMPACT_HOME/dsalib

directory.
This directory is created during the installation, and initially it is empty.

3. Restart the Impact Server.

Note: This procedure does not apply to DB2 and HSQL.
For DB2 and HSQL, use the following procedure:
a. Replace the jar file(s) for the DB2 JDBC driver in the $IMPACT_HOME/lib3p/

directory.
b. To update the Impact Server's ear, run the following command from the

$IMPACT_HOME/install/ directory:
"..\bin\nc_ant -f new-server.xml -Dimpact.ewas.pw=<tipadmin password>
updateears"

This should be run with the Impact Server running.
Prior to 6.1.1-TIV-NCI-FP0003, you may need to edit the new-server.xml and
update-ear.py files to complete a successful deployment:
a. Edit the $IMPACT_HOME/install/new-server.xml file to add the following

line after "<include name="*.ear"/>" (line 866):
<exclude name="NCI_update.ear"/>

b. Edit the $IMPACT_HOME/install/update-ear.py file to remove line 74:
"[documenter.war documenter.war,WEB-INF/web.xml default_host] " + \

Chapter 2. Data source adapters (DSA) 9

http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect

What to do next

In a clustered configuration, you must repeat this procedure for each server in the
cluster because files in the $IMPACT_HOME/dsalib directory are not replicated
between cluster members. It is recommended that all the servers in the cluster
should be stopped while you are performing this procedure.

Changing the character set encoding for the database
connection

Use this procedure to change the default character set encoding (UTF-8) that is
used in establishing a connection to the SQL database.

Procedure
1. In the $IMPACT_HOME/etc directory, create a properties file for the DSA for which

you want to change the default character set encoding.
The properties filename must have the following format:
servername_drivermainclass.props

where servername is the name of your Impact Server, and drivermainclass is the
class name of the JDBC driver to connect to the SQL database.
For example, you will create the NCI_org.gjt.mm.mysql.Driver.props file, if the
name of your Impact Server is NCI, and if it is connecting to the MySQL
database.

Remember: You can get the drivermainclass values for other SQL databases,
from their JDBC documenation.

2. Add a CHARSET=encoding property to the properties file.
For example, CHARSET=EUC_JP.

3. Restart the Impact Server.

SQL database data model
An SQL database data model is an abstract representation of data stored in an
underlying relational database or other data source that can be accessed through
JDBC.

SQL database data models consist of SQL database data sources, SQL database
data types, and SQL database data items.

SQL database data sources
An SQL database data source represents a relational database or another source of
data that can be accessed using an SQL database DSA.

A wide variety of commercial relational databases are supported, such as Oracle,
Sybase, and Microsoft SQL Server. In addition, freely available databases like
MySQL, and PostgreSQL are also supported. The Netcool/OMNIbus ObjectServer
is also supported as a SQL data source.

The configuration properties for the data source specify connection information for
the underlying source of data. Some examples of SQL database data sources are:
v A DB2 database
v A MySQL database
v An application that provides a generic ODBC interface
v A character-delimited text file

10 Netcool/Impact: DSA Reference Guide

You create SQL database data sources using the GUI. You must create one such
data source for each database that you want to access. When you create an SQL
database data source, you need to specify such properties as the host name and
port where the database server is running, and the name of the database. For the
flat file DSA and other SQL database DSAs that do not connect to a database
server, you must specify additional configuration properties.

Note that SQL database data sources are associated with databases rather than
database servers. For example, an Oracle database server can host one or a dozen
individual databases. Each SQL database data source can be associated with one
and only one database.

SQL database data types
An SQL database data type represents a table in a relational database or a similar
structure that contains sets of data (like an Oracle view or a list of rows in a
comma-delimited text file).

The configuration properties for the data type specify the structure and contents of
data stored in the table. Some examples of SQL database data types are:
v A DB2 database table
v A MySQL database table
v The contents of a character-delimited text file

Each SQL database data type contains a set of fields that correspond to columns in
the database table (or structured categories of data in other types of data sources).
The data type can contain fields that represent all of the columns or a subset of the
columns in the table.

You create SQL database data types using the GUI. You must create one such data
type for each database table that you want to access.

When you create an SQL database data type, you need to specify such properties
as the table name and the names of the table columns that you want to include in
the data type. For the flat file DSA, you must specify additional configuration
properties.

SQL database data items
An SQL database data item represents a table row in a relational database or
another set of data (like a row in a comma-delimited text file).

You use the GUI to view, add, modify, and delete SQL database data items.
Typically, however, you use the tools that are provided by the relational database
server (or other third-party tools) to manage the data in an underlying data source.

SQL database policies
SQL database DSA policies work with data stored in underlying relational
databases or other data sources that can be accessed using an SQL database DSA.

You can perform the following tasks by using a SQL database policy:
v Retrieve data from an SQL database data source
v Add data to an SQL database data source
v Modify data stored in an SQL database data source
v Delete data stored in an SQL database data source
v Call database functions

Chapter 2. Data source adapters (DSA) 11

v Call database stored procedures

Retrieving data from an SQL database data source
The Impact Policy Language (IPL) provides a set of functions that retrieve data
from an SQL database data source based on different criteria.

These functions allow you to retrieve data by key, by filter, and by link, and by
directly running SQL SELECT queries against the underlying database or other
source of data. The following table shows the IPL functions that retrieve SQL
database data.

Table 3. IPL Functions that Retrieve SQL Database Data

Function Description

GetByKey Retrieves data items (rows in a table or other data element) whose key
fields match the specified key expression.

GetByFilter Retrieves data items whose field values match the specified SQL filter
string.

GetByLinks Retrieves data items that are dynamically or statically linked to
another data item using the GUI.

DirectSQL Retrieves data items by directly running an SQL SELECT query against
the underlying database or other source of data.

For detailed syntax descriptions of these functions, see the Policy Reference Guide.

The following example shows how to use GetByKey to retrieve data items (rows in
a table or other data element) whose key field matches the specified key
expression. In this example, the SQL database data type associated with the table is
Customer and the key expression is 12345.
DataType = "Customer";
Key = 12345;
MaxNum = 1;

MyCustomer = GetByKey(DataType, Key, MaxNum);

The following example shows how to use GetByFilter to retrieve data items whose
field values match the specified SQL filter string. In this example, the SQL database
data type is Node and the filter string is Location = ’New York City’ AND Facility
= ’Manhattan’.
DataType = "Node";
Filter = "Location = ’New York City’ AND Facility = ’Manhattan’";
CountOnly = False;

MyNodes = GetByKey(DataType, Key, MaxNum);

The following example shows how to use GetByLinks to retrieve data items that
have been statically or dynamically linked to another data item using the
Netcool/Impact GUI. In this example, you use GetByLinks to retrieve data items
that are linked to the items of type Node returned in the previous example.
DataType = {"Customer"};
Filter = "";
MaxNum = 1000;
DataItems = MyNodes;

MyCustomers = GetByLinks(DataType, Filter, MaxNum, MyNodes);

12 Netcool/Impact: DSA Reference Guide

Adding data to an SQL database data source
You can use the AddDataItem function to add data to an SQL database data
source.

The following example shows how to use AddDataItem to add a row to an SQL
database table that is represented by the User data type. In this example, Name,
Location, Facility, andEmail are columns in the database table.
DataType = "User";

MyUser = NewObject();

MyUser.Name = "John Smith";
MyUser.Location = "New York City";
MyUser.Facility = "Manhattan";
MyUser.Email = "jsmith@example.com";

AddDataItem(DataType, MyUser);

For a detailed syntax description of this function, see the Policy Reference Guide.

Modifying data stored in an SQL database data source
You can use the BatchUpdate function to modify the data that is stored on the SQL
database. You can also assign values to variables for data items that were
previously retrieved by using the GetByKey, GetByFilter, or GetByLinks to modify
data stored in an SQL database.

The following example shows how to modify a row in an SQL database table by
assigning values to member variables of a data item that was previously retrieved
by using the GetByFilter function. In this example, the Customer data type
represents a table in the underlying database and the Name, Location, and Facility
fields represent columns in the table.
DataType = "Customer";
Filter = "Name = ’John Smith’";
CountOnly = "False";

MyCustomer = GetByFilter(DataType, Filter, CountOnly);

MyCustomer[0].Location = "Raleigh";
MyCustomer[0].Facility = "FAC_01";

The following example shows how to modify multiple rows in an SQL database
table by using the BatchUpdate function. In this example, you update the Location
and Facility columns in the table for each row where the value of Location is
New York City.
DataType = "Customer";
Filter = "Location = ’New York City’";
UpdateExpression = "Location = ’Raleigh’ AND Facility = ’FAC_01’";

BatchUpdate(DataType, Filter, UpdateExpression);

For more information about using these methods to modify SQL database data, see
the Policy Reference Guide.

Deleting data stored in an SQL database data source
You can use policies to delete data that is stored in an SQL database data source by
using the DeleteDataItem, or BatchDelete functions.

Chapter 2. Data source adapters (DSA) 13

With these functions, you can delete either a single row or data element, or
multiple rows. The following table shows the IPL functions that delete SQL
database data.

Table 4. IPL Functions that Delete SQL Database Data

Function Description

DeleteDataItem Deletes a single data item which is a row in a table or other data
element.

BatchDelete Deletes one or more data items whose field values match the
specified SQL filter string.

The following example shows how to delete a row in a database table by using the
DeleteDataItem function. In this example, you first retrieve the data item that
represents the row by using the GetByKey function and then call DeleteDataItem.
DataType = "Node";
Key = "DB2_01";
MaxNum = 1;

MyNode = GetByKey(DataType, Key, MaxNum);

DeleteDataItem(MyNode[0]);

The following example shows how to delete multiple rows from a database table
by using the BatchDelete function. In this example, you delete all rows from the
table that is represented by the User data type, where the value of the Location
column is New York City.
DataType = "User";
Filter = "Location = ’New York City’";

BatchDelete(DataType, Filter, NULL);

For more information about using these functions to delete SQL database data, see
the Policy Reference Guide.

Calling database functions
You can use the CallDBFunction to call any SQL function that is defined by the
database server.

SQL functions vary per database. For a list of functions that are supported by a
specific database server, see the documentation provided by the software vendor.

The following example shows how to call a database function named NOW() and
return the results of the function for use in a policy.
// Call CallDBFunction and pass the name of a data type, a filter
// string and the function expression

DataType = "Server";
Filter = "0 = 0";
Metric = "NOW()";

DBTime = CallDBFunction(DataType, Filter, Metric);

For a detailed syntax description of the CallDBFunction function, see the Policy
Reference Guide.

14 Netcool/Impact: DSA Reference Guide

Calling database stored procedures
You can use the CallStoredProcedure function to call Oracle, Sybase, DB2, and SQL
Server database stored procedures.

The following example shows how to call a Sybase stored procedure named
GetCustomerByLocation. In this example, the Sybase database is represented by the
data source SYB_03.
Sp_Parameter = NewObject();
Sp_Parameter.CustType = "Platinum";
Sp_Parameter.Location = "Mumbai";

DataSource = "SYB_03";
ProcName = "GetCustomerByLocation";

MyResults = CallStoredProcedure(DataSource, ProcName, Sp_Parameter);

For a detailed syntax description of the CallStoredProcedure function, see the
Policy Reference Guide.

SQL database DSA failover
Failover is the process by which an SQL database DSA automatically connects to a
secondary database server (or other data source) when the primary server becomes
unavailable.

This feature ensures that Netcool/Impact can continue operations despite problems
accessing one or the other server instance. You can configure failover separately for
each data source that connects to a database using an SQL Database DSA.

SQL database DSA failover modes
Standard failover, failback, and disabled failover are supported failover modes for
SQL database DSAs.

Standard failover
Standard failover is a configuration in which an SQL database DSA
switches to a secondary database server when the primary server becomes
unavailable and then continues using the secondary until Netcool/Impact
is restarted.

Failback
Failback is a configuration in which an SQL database DSA switches to a
secondary database server when the primary server becomes unavailable
and then tries to reconnect to the primary at intervals to determine
whether it has returned to availability.

Disabled failover
If failover is disabled for an SQL database DSA the DSA reports an error to
Netcool/Impact when the database server is unavailable and does not
attempt to connect to a secondary server.

Standard failover:

Standard failover is a configuration in which an SQL database DSA switches to a
secondary database server when the primary server becomes unavailable and then
continues using the secondary until Netcool/Impact is restarted.

If the secondary server becomes unavailable, the SQL database DSA will attempt to
resume connections to the original primary server.

Chapter 2. Data source adapters (DSA) 15

Failback:

Failback is a configuration in which an SQL database DSA switches to a secondary
database server when the primary server becomes unavailable and then tries to
reconnect to the primary at intervals to determine whether it has returned to
availability.

If the primary server has become available, the DSA will resume connections using
that server. If the primary has not become available, the DSA will continue to use
the secondary server. In a failback configuration, the SQL database DSA will
always attempt to reconnect to the primary server before making a connection to
the secondary.

Setting up DSA failover
You set up failover when you create and configure an SQL database data source in
the GUI.

Procedure

You use the data source editor to select a failover configuration for the data source
and to specify connection information for the primary and secondary database
servers. For more information about creating and configuring SQL database data
sources, see the User Interface Guide.

DSA failover defaults
An SQL database DSA determines that a database server is unavailable when it
cannot connect to the database server, or when the database server returns an error
message that is not related to SQL or stored procedure syntax.

Netcool/Impact provides a built-in list of errors messages that indicate that a
database server has received an incorrectly formed SQL or stored procedure query.
SQL database DSAs exclude these errors when determining whether a database
server is unavailable. This means that, by default, a DSA does not failover or fail
back when a syntax error occurs at the database level.

The following shows the built-in list of errors that Netcool/Impact excludes.

Table 5. SQL Database Error Messages for Failover

Database Error Codes

DB2 No default error codes

Derby No default error codes

GenericSQL No default error codes

HSQLDB No default error codes

Informix Error codes from -899 to -200 inclusive

MySQL Error codes 1047, 1048, 1051, 1052, 1054 to 1064 inclusive,
1071, 1106 to 1111 inclusive, 1122, 1138, 1146, 1217, 1222

ObjectServer Error codes 667, 5555, 20000, 20001, 20002

ODBC No default error codes

Oracle Error codes 100, 900 to 999 inclusive, 17006

PostgreSQL SQL states 03000, 42000, 42601, 42602, 42622, 42701, 42702,
42703, 42704, 42803, 42804, 42809, 42883, 42939, 42P01,
42P02, 42P10, 42P18

16 Netcool/Impact: DSA Reference Guide

Table 5. SQL Database Error Messages for Failover (continued)

Database Error Codes

SQL Server Error codes 105, 207, 208, 213, 229, 230, 260

Sybase Error codes 100 to 300 inclusive, 403, 404, 407, 413

For instructions in providing an alternate customized list, see “Customizing DSA
failover.”

Customizing DSA failover
You can provide an alternate list of error codes that the SQL database DSAs
exclude when determining whether a database server is unavailable.

You store this list in a file named $IMPACT_HOME/etc/
NCI_non_failover_errors.props, where NCI is the name of the Impact Server
instance. This file is not automatically created so you must manually create and
edit this file using a text editor.

Properties in this file have the following format:
impact.database=error_codes

where database is the name of the database and error_codes is a comma-separated
list of error identification numbers. To specify a range of codes, place a less-than
character between the lower limit and upper limit numbers as follows: 200<300.
The error code range is inclusive of the numbers specified.

The following table shows the internal database names that you must use in the
properties file.

Table 6. Database Internal Names

Database Internal Name

DB2 db2

Derby derby

GenericSQL genericsql

HSQL hsqldb

Informix informix

MS SQL Server mssql

MySQL mysql

Netcool/OMNIbus
ObjectServer

objectserver

ODBC odbc

Oracle oracle

PostgreSQL postgresql

Sybase sybase

Error codes are defined by at the database level. For a list of possible error codes,
see the documentation provided with the database application.

Chapter 2. Data source adapters (DSA) 17

The following example shows a properties file that lists the default built-in error
codes excluded by Netcool/Impact when determining if a database server is
unavailable.
impact.db2=
impact.informix=-899<-200
impact.mssql=105,207,208,213,229,230,260
impact.mysql=1047,1048,1051,1052,1054<1064,1071,1106<1111,1122,1138,1146,
1217,1222
impact.objectserver=667,5555,20000,20001,20002
impact.odbc=
impact.oracle=100,900<999,17006
impact.postgresql=03000,42000,42601,42602,42622,42701,42702,42703,42704,
42803,42804,
42809,42883,42939,42P01,42P02,42P10,42P18
impact.sybase=100<300,403,404,407,413

18 Netcool/Impact: DSA Reference Guide

Chapter 3. Working with the UI data provider DSA

The UI data provider DSA is used to return results from any UI data provider

To set up a UI data provider DSA complete the following steps:
v Create a UI data provider data source
v Create a UI data provider data type
v Create a policy that uses the GetByFilter function
v Run the policy to return the results from the selected UI data provider

UI data provider data model
A UI data provider data model is an abstract representation of data stored in an
underlying relational database or other data source that can be accessed through a
UI data provider.

The UI data provider data model has the following elements:
v UI data provider data sources
v UI data provider data types

UI data provider data sources
A UI data provider data source represents a relational database or another source
of data that can be accessed by using a UI data provider DSA.

You create UI data provider data sources in the GUI. You must create one such
data source for each UI data provider that you want to access.

Creating a UI data provider data source
Use this information to create a UI data provider data source.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation

click Data Model to open the Data Model tab.
2. From the Cluster and Project lists, select the cluster and project you want to

use.
3. In the Data Model tab, click the New Data Source icon in the toolbar. Select

UI Data Provider. The tab for the data source opens.
4. In the Data Source Name field:

Enter a unique name to identify the data source. You can use only letters,
numbers, and the underscore character in the data source name. If you use
UTF-8 characters, make sure that the locale on the Impact Server where the
data source is saved is set to the UTF-8 character encoding.

5. In the Host Name field, add the location where the UI data provider is
deployed. The location can be the local host or a fully qualified domain name.

6. In the Port field, add the port number of the UI data provider.
7. Use SSL: Select this check box to use SSL to transfer data. For more

information, see the Netcool/Impact Administration Guide under the section
Secure Communication.

© Copyright IBM Corp. 2006, 2014 19

8. Base Url: Type the directory location of the Tivoli Integrated Portal rest
application, for example, /ibm/tivoli/rest.

9. User Name: Type a user name with which you can access the UI data
provider.

10. Password: Type a password with which you can access the UI data provider.
11. Click the Test Connection button to test the connection to the UI data

provider to ensure that you entered the correct information. Success or failure
is reported in a message box. If the UI data provider is not available when
you create the data source, you can test it later.
To test the connection to the UI data provider at any time, from the data
source list, right click the data source and select Test Connection from the list
of options.

12. Click the Discover Providers button to populate the Select a Provider list.
13. From the Select a Provider list, select the provider that you want to return the

information from.
14. From the Select a Source list, select the data content set that you want to

return information from. The Select Source list is populated with the available
UI data provider data content sets on the specified machine.

15. Click Save to create the data source.

UI data provider data types
A UI data provider data type represents a structure similar to a table that contains
sets of data in a relational database. Each UI data provider database data type
contains a set of fields that correspond to data sources in the UI data provider. You
create UI data provider data types in the GUI. You must create one such data type
for each data set that you want to access.

The configuration properties for the data type specify which subset of data is
retrieved from the UI data provider data source.

Creating a UI data provider data type
Use this information to create a UI data provider data type.

Procedure
1. Right click the UI data provider data source you created, and select New Data

Type.
2. In the Data Type Name field, type the name of the data type.
3. The Enabled check box is selected to activate the data type so that it is

available for use in policies.
4. The Data Source Name field is prepopulated with the data source.
5. From the Select a Dataset list, select the data set you want to return the

information from. The data sets are based on the provider and the data sets
that you selected when you created the data source. If this list is empty, then
check the data source configuration.

6. Click Save. The data type shows in the list menu.

Viewing data items for a UI data provider data type
You can view and filter data items that are part of a UI provider data type.

20 Netcool/Impact: DSA Reference Guide

Procedure
1. In the Data Model tab, right click the data type and select View Data Items. If

items are available for the data type, they show on the right side in tabular
format.

2. If the list of returned items is longer than the UI window, the list is split over
several pages. To go from page to page, click the page number at the bottom.

3. To view the latest available items for the data type, click the Refresh icon on
the data type.

4. You can limit the number of data items that display by entering a search string
in the Filter field. For example, add the following syntax to the Filter field,
totalMemory=256. Click Refresh on the data items menu to show the filtered
results.

Tip: If your UI Data Provider data type is based on a Netcool/Impact policy,
you can add &executePolicy=true to the Filter field to run the policy and
return the most up to date filtered results for the data set.
For more information about using the Filter field and GetByFilter function
runtime parameters to limit the number of data items that are returned, see
“Using the GetByFilter function to handle large data sets.”

Using the GetByFilter function to handle large data sets
You can extend the GetByFilter function to support large data sets. To fetch items
from a UI data providerwith the GetByFilter, additional input parameters can be
added to the filter value of the GetByFilter function. Additional filter parameters
allow you to refine the result set returned to the policy.

The UI data provider REST API supports the following runtime parameters:
v count: limits the size of the returned data items.
v start: specifies the pointer to begin retrieving data items.
v param_*: sends custom parameters to data sets that the UI data provider uses

during construction and data presentation. The UI Data Provider server
recognizes any additional parameters and handles the request if the parameter
has the prefix param_. These values are also used to uniquely identify a data set
instance in the REST service cache.

v id: If used, it fetches a single item. The id parameter specifies the id of item you
want to retrieve. For example, &id=1. If the id parameter is used, all other
filtering parameters are ignored.

Tip: If your UI Data Provider data type is based on a policy, then you can add
executePolicy=true to the FILTER parameter in GetByFilter(Filter, DataType,
CountOnly) to run the policy and ensure the latest data set results are returned by
the provider.

This policy example uses the FILTER runtime parameters in a GetByFilter
(Filter, DataType, CountOnly) implementation in a UI data provider.
DataType="123UIdataprovider";
CountOnly = false;

Filter = "t_DisplayName =’Windows Services’";
Filter = "t_DisplayName starts ’Wind’";
Filter = "t_DisplayName ends ’ces’";
Filter = "t_DisplayName contains 'W'&count=6¶m_One=paramOne";
Filter = "t_DisplayName contains ’W’&count=3&start=2";
Filter = "((t_DisplayName contains ’Wi’)
or (t_InstanceName !isnull))";

Chapter 3. Working with the UI data provider DSA 21

Filter = "((t_DisplayName contains ’Wi’)
or (t_InstanceName=’NewService’))&count=3";
Filter = "((t_DisplayName contains ’Wi’)
or (t_InstanceName=’NewService’))&count=5&start=1";

MyFilteredItems = GetByFilter(DataType, Filter, CountOnly);

Log("RESULTS: GetByFilter(DataType="+DataType+", Filter="+Filter+",
CountOnly="+CountOnly+")");

Log("MATCHED item(s): " + Num);

index = 0;
if(Num > 0){

while(index <Num){
Log("Node["+index+"] id = " + MyFilteredItems[index].id +

"---Node["+index+"] DisplayName= " +
MyFilteredItems[index].t_DisplayName);

index = index + 1;
}

}
Log("========= END =========");

Here are some more syntax examples of the FILTER runtime parameters that you
can use in a GetByFilter (Filter, DataType, CountOnly) implementation in a UI
data provider.

Example 1:
Filter = "&count=6";

No condition is specified. All items are fetched by the server, but only the first 6
are returned.

Example 2:
Filter = "&count=3&start=2";

No condition specified. All items are fetched by the server, but only the first 3 are
returned, starting at item #2

Example 3:
Filter = "t_DisplayName ends ’ces’

Only items that match the condition = "t_DisplayName ends ’ces’ are fetched.

Example 4:
Filter = "t_DisplayName contains ’W’&count=6¶m_One=paramOne";

Only items that match the condition "t_DisplayName contains
’W’&count=6¶m_One=paramOne"; are fetched. Only the first six items that
contain 'W' and paramOne are returned and paramOne is available for use by the
provider when it returns the data set.

Example 5:
Filter = "¶m_One=paramOne";

All items are fetched by the server, and paramOne is available for use by the
provider when it returns the data set.

22 Netcool/Impact: DSA Reference Guide

Adding Delimiters

The default delimiter is the ampersand (&) character. You can configure a different
delimiter by editing the property impact.uidataprovider.query.delimiter in the
NCI_server.props file. Any time you add a delimiter you must restart the Impact
Server to implement the changes.

The delimiter can be any suitable character or regular expression, that is not part
of the data set name or any of the characters used in the filter value.

The following characters must use double escape characters \\ when used as a
delimiter:
* ^ $. |

Examples:

An example using an Asterisk (*) as a delimiter:
v Property Syntax: impact.uidataprovider.query.delimiter=*
v Filter query: t_DisplayName contains ’Imp’*count=5

An example with a combination of characters:
v Property Syntax:impact.uidataprovider.query.delimiter=ABCD
v Filter query: t_DisplayName contains ’Imp’ABCDcount=5

An example of a regular expression, subject to Java language reg expression rules:
v Property Syntax: impact.uidataprovider.query.delimiter=Z|Y
v Filter queryt_DisplayName contains ’S’Zcount=9Zstart=7YexecutePolicy=true

An example of a combination of special characters: * . $ ̂ |

v Property Syntax: impact.uidataprovider.query.delimiter=*|\\.|\\$|\\^|\\|
v Filter query t_DisplayName contains ’S’.count=9|start=7$executePolicy=true

Retrieving data from a UI provider data source
Create a policy that includes the GetByFilter function to retrieve data by filter
from a UI data provider data source.

To retrieve data from a UI data provider data source, you must create a
Netcool/Impact policy that uses the GetByFilter function to return theUI data
provider data items. The GetByFilter function is modified for use with data
sources. This function retrieves data items whose properties match the specified UI
data provider filter string. The UI data provider filter string is made up of three
parts property 'id', operator, and the value.

You can use the operator AND and the operator OR to repeat the conditions. If you
use these operators together, then the full expression must be in parentheses. For
example:
((NAME contains 'abcd') or (TYPE isnull) or (DESCRIPTION starts 'abcd'))
and (SIZE >= 100) and (LAST_UPDATE > 1)

UI data provider data items contain many properties. Each of these properties has
two attributes that are relevant for filtering UI data provider data items, a display
value attribute and the actual value attribute. Operators are evaluated against the

Chapter 3. Working with the UI data provider DSA 23

display value by default. If you want to filter for the actual values instead, you
must add an asterisk (*) before the property. For example:
(*TYPE = 'SERVER')’s

For a full list of the available operators, see “UI data provider operators” on page
27

You can use the Keys function to return an array of strings that contain the field
names for a specific UI data provider data item. For more information about the
Keys function, see the Netcool/Impact Policy Reference Guide.

After you create the policy, you must create a user output parameter and
associated custom schema values for the GetByFilter function to ensure that
Netcool/Impact can process the values that the function returns from the external
UI data provider:
1. In the policy editor, click the Configure User Parameters icon.
2. Click the New Policy Output Parameter: New button
3. Select DirectSQL / UI Provider Datatype in the Format field.
4. Enter a name for the parameter in the Name field.
5. Enter the same name as defined in the policy in the Policy Variable Name

field.
6. To create the custom schema values, click the Open Schema Definition Editor

icon. You must create custom schema values for each schema that is
defined in the database and included in the returned results. To view the
schema values that are required for your policy, right click the associated data
type and click View Data Items. You must create a custom schema value for
each column that you want to view in the widget in the console.

If you enable eventing for widgets that retrieved data from a UI data provider data
type that uses the GetByFilter policy function, see the topic about eventing
between widgets that access data from a UI data provider that uses GetbyFilter in
the Troubleshooting Guide.

For more information about how to create user output parameters and custom
schema values, see “Creating custom schema values for output parameters” on
page 26.

Example

In the following policy example, the UI data provider data type called
uidataprovider-ImpactROI is sourcing the data from the REPORT_ImpactROI data
type that uses the GetByFilter function and the IPL policy language. The
REPORT_ImpactROI data type is a standard data type delivered with
Netcool/Impact.
DataType="uidataprovider-ImpactROI";
Filter = "PROCESS_NAME='Escalate'";
CountOnly = false;

The GetByFilter function returns an OrgNodes object that represents an array of
values:
OrgNodes = GetByFilter(DataType, Filter, CountOnly);

24 Netcool/Impact: DSA Reference Guide

The filter matches only one item in the data, and the GetByFilter function returns
one item as a result:
Log("Number of org nodes returned:" + Num); // will be = 1
Log("Key = " + OrgNodes[0].Key); // will be = Escalate

In the following policy example, the data type is myuidataproviderDataType
DataType="myuidataproviderDataType";
Filter = "SAVED_TIME > 1000";
CountOnly = false;

This example returns the following OrgNodes object:
OrgNodes = GetByFilter(DataType, Filter, CountOnly);

If the filter matches two items, the GetByFilter function returns these two items as
follows:
Log("Number of org nodes returned:" + Num);
// will be = 2
Log("Key = " + OrgNodes[0].Key);
// will be = Escalate
Log("Key = " + OrgNodes[1].Key);
// will be = Resolve

The following example demonstrates how to create a user output parameter and
custom values to represent the output of the GetByFilter function. The following
policy uses the GetByFilter function to retrieve data from an external UI data
provider. The values that are returned are contained in the DemoUISchema
parameter.
Filter="&count=200";
DemoUISchema=GetByFilter(’UITestCuriMySQL’,Filter,CountOnly);
Log(DemoUISchema);

You create the following output parameter for to represent the DemoUISchema
parameter. You do not have to enter a data source or data type name.

Table 7. Output parameter for the DemoUISchema parameter

Field User entry

Name DemoUISchema

Policy variable name DemoUISchema

Format DirectSQL / UI Provider Datatype

After you create the output parameter, you must create custom schema values for
id, firstName, and lastName. To view the schema values that are required for your
policy, right click the associated data type and click View Data Items.

Table 8. Custom schema value for id

Field Entry

Name id

Format Integer

Table 9. Custom schema value for fname

Field Entry

Name firstName

Format String

Chapter 3. Working with the UI data provider DSA 25

Table 10. Custom schema value for lastName

Field Entry

Name lastname

Format String

Creating custom schema values for output parameters
When you define output parameters that use the DirectSQL, Array of Impact
Object, or Impact Object format in the user output parameters editor, you also
must specify a name and a format for each field that is contained in the
DirectSQL, Array of Impact Object, or Impact Object objects.

About this task

Custom schema definitions are used by Netcool/Impact to visualize data in the
console and to pass values to the UI data provider and OSLC. You create the
custom schemas and select the format that is based on the values for each field
that is contained in the object. For example, you create a policy that contains two
fields in an object:
O1.city="NY"
O1.ZIP=07002

You define the following custom schemas values for this policy:

Table 11. Custom schema values for City

Field Entry

Name City

Format String

Table 12. Custom schema values for ZIP

Field Entry

Name ZIP

Format Integer

If you use the DirectSQL policy function with the UI data provider or OSLC, you
must define a custom schema value for each DirectSQL value that you use.

If you want to use the chart widget to visualize data from an Impact object or an
array of Impact objects with the UI data provider and the console, you define
custom schema values for the fields that are contained in the objects. The custom
schemas help to create descriptors for columns in the chart during initialization.
However, the custom schemas are not technically required. If you do not define
values for either of these formats, the system later rediscovers each Impact object
when it creates additional fields such as the key field. UIObjectId, or the field for
the tree widget, UITreeNodeId. You do not need to define these values for OSLC.

Procedure
1. In the policy user parameters editor, select DirectSQL, Impact Object, or Array

of Impact Object in the Format field.

26 Netcool/Impact: DSA Reference Guide

2. The system shows the Open the Schema Definition Editor icon

beside
the Schema Definition field. To open the editor, click the icon.

3. You can edit an existing entry or you can create a new one. To define a new
entry, click New. Enter a name and select an appropriate format.
To edit an existing entry, click the Edit icon beside the entry that you want to
edit

4. To mark an entry as a key field, select the check box in the Key Field column.
You do not have to define the key field for Impact objects or an array of Impact
objects. The system uses the UIObjectId as the key field instead.

5. To delete an entry, select the entry and click Delete.

UI data provider operators
You use these operators to create a filter string for UI data provider data sources.

Table 13. Operators for creating filter strings

String Numeric and date Boolean and enumerated

contains = =

!contains != !=

starts <

!starts <=

ends >

!ends >=

isnull

!isnull

=

!=

Chapter 3. Working with the UI data provider DSA 27

28 Netcool/Impact: DSA Reference Guide

Chapter 4. Working with the LDAP DSA

The LDAP DSA are used to access information stored in an LDAP server.

This type of DSA is read-only. You cannot use Netcool/Impact to insert new LDAP
data into the server data store. The LDAP DSA is s built in DSA and does not
require any additional installation or configuration.

LDAP DSA overview
Netcool/Impact uses the Lightweight Directory Access Protocol (LDAP) data
source adaptor to retrieve data managed by an LDAP server.

The LDAP DSA is a direct-mode data source adaptor that runs in-process with
Netcool/Impact. This DSA is automatically loaded during application run time.
You do not have to start or stop this DSA independently of the application.
Netcool/Impact is not able to use this DSA to add, modify, or delete information
managed by the LDAP server

To use the LDAP DSA, complete the following tasks:
v Create an LDAP DSA data model that provides an abstract representation of the

data managed by the LDAP server.
v Write one or more LDAP DSA policies that retrieve data from the underlying

LDAP server.

For more information about LDAP data model, see.“LDAP data model”

For more information about LDAP policies, see.“LDAP policies” on page 31

Supported LDAP servers
Netcool/Impact supports directory servers that fully implement the LDAP v2 and
v3 specifications, including Netscape, iPlanet, OpenLDAP, and Microsoft Active
Directory servers.

LDAP data model
A Lightweight Directory Access Protocol (LDAP) data model is an abstract
representation of data that is managed by an LDAP directory server.

LDAP data models have the following elements:
v LDAP data sources
v LDAP data types
v LDAP data items

LDAP data sources
The Lightweight Directory Access Protocol (LDAP) data source represent LDAP
directory servers.

Netcool/Impact supports the OpenLDAP and Microsoft Active Directory servers.

© Copyright IBM Corp. 2006, 2014 29

You create LDAP data sources in the GUI Server. You must create one data source
for each LDAP server that you want to access. The configuration properties for the
data source specify connection information for the LDAP server and any required
security or authentication information.

LDAP data types
A Lightweight Directory Access Protocol (LDAP) data type represents a set of
entities in an LDAP directory tree.

The LDAP DSA determines which entities are part of this set in real time by
dynamically searching the LDAP tree for entities that match a specified LDAP filter
within a certain scope. The DSA searches in relation to a location in the tree known
as the base context.

Use the GUI to create LDAP data. You must create one LDAP data type for each
set of entities that you want to access.

The following table shows the configuration properties for an LDAP data type.

Table 14. LDAP Data Type Configuration Properties

Configuration
Property Description

Data type name Name of the new LDAP data type.

Search scope Keyword that indicates the scope for the LDAP search. Possible
values are: OBJECT_SCOPE, ONELEVEL_SCOPE, and SUBTREE_SCOPE.

OBJECT_SCOPE causes the LDAP DSA to search only the specified base
context for matches.

ONELEVEL_SCOPE causes the DSA to search only the child entities of
the base context for matches.

SUBTREE_SCOPE causes the DSA to search all descendants of the base
context.

Base context Location in the LDAP tree with respect to which the LDAP DSA
searches for matching entities. An example is ou=people, o=IBM.com.

Key search field Attribute in the LDAP entity that uniquely identifies it as a key.
Used when you retrieve data items from an LDAP data type with
the GetByKey function in a policy.

Display name field Attribute in the LDAP entity that is displayed when you use the
GUI to browse LDAP data items.

Restriction filter LDAP search filter as described in Internet RFC 2254: String
Representation of LDAP Search Filters.

LDAP data items
A Lightweight Directory Access Protocol (LDAP) data item represents an entity in
the LDAP directory tree.

Each field in an LDAP data item corresponds to an attribute in the LDAP entity.

You use the GUI to view LDAP data items. You cannot use the GUI to add,
modify, or delete LDAP data items.

30 Netcool/Impact: DSA Reference Guide

LDAP policies
Information from LDAP data sources is retrieved by the LDAP policies, which are
Netcool/Impact policies. You cannot add, modify, or delete LDAP data from within
a policy.

Retrieving data from an LDAP data source
You can retrieve data, by key, filter, or link, from an LDAP data source by using
the GETbyKey, GetByFilter and GetByLinks functions when writing a policy.

The following table describes the functions that retrieve LDAP data.

Table 15. Functions that Retrieve LDAP Database Data

Function Description

GetByKey Retrieves data items, or entities in the LDAP directory tree, whose key
fields match the specified key expression.

GetByFilter Retrieves data items whose field values match the specified LDAP
filter string.

GetByLinks Retrieves data items that are dynamically or statically linked to
another data item using the Netcool/Impact GUI.

Example

The following example shows how to use GetByKey to retrieve data items, or
entities in the LDAP directory tree, whose key field matches the specified key
expression. In this example, the LDAP data type associated with a search scope in
the tree is Customer and the key expression is 12345.
DataType = "Customer";
Key = 12345;
MaxNum = 1;

MyCustomer = GetByKey(DataType, Key, MaxNum);

The following example shows how to use GetByFilter to retrieve data items whose
field values match the specified LDAP filter string. The LDAP filter is part of the
specification described in Internet RFC 2254. In this example, the LDAP data type
is Facility and the filter string is (|(facility=Wall
St.)(facility=Midtown)(facility=Jersey City)).
DataType = "Facility";
Filter = "(|(facility=Wall St.)(facility=Midtown)(facility=Jersey City))";
CountOnly = False;

MyFacilities = GetByFilter(DataType, Filter, CountOnly);

The following example shows how to use GetByLinks to retrieve data items that
are statically or dynamically linked to another data item using the Netcool/Impact
GUI. In this example, you use GetByLinks to retrieve data items of type Customer
that are linked to data items in the MyFacilities array returned in the previous
example.
DataType = {"Customer"};
Filter = "";
MaxNum = 1000;
DataItems = MyFacilities;

MyCustomers = GetByLinks(DataType, Filter, MaxNum, DataItems);

Chapter 4. Working with the LDAP DSA 31

For detailed syntax descriptions of these functions, see the Policy Reference Guide.

International character support
The Lightweight Directory Access Protocol (LDAP) Data Source Adaptor (DSA)
follows the LDAP v3 standard for international character support.

This standard specifies that non-ASCII characters must be stored in UTF-8 format
in the LDAP server to be handled correctly by client applications. If you use the
LDAP DSA to access non-ASCII character data, make sure that the data is encoded
using the UTF-8 standard.

32 Netcool/Impact: DSA Reference Guide

Chapter 5. Working with the web services DSA

The web services data source adaptor (DSA) is a direct-mode adaptor that
Netcool/Impact automatically loads during application run time.

You do not have to start or stop this DSA independently of the application. The
web services DSA is installed with Netcool/Impact so you do not have to complete
any additional installation or configuration steps.

Web services DSA is compatible with its older versions in Netcool/Impact 3.x and
4.x. Your old IPL policies, that were developed on Netcool/Impact 4.x and 3.x will
run without modification in the current version.

The web services DSA provides support for WSDL version 1.1 and 2.0, and SOAP
version 1.1.

Web services DSA overview
The web services data source adaptor (DSA) is used to exchange data with external
systems, devices, and applications through web services interfaces.

The web services DSA uses blocking messages to communicate with web services.
The use of blocking messages forces Netcool/Impact to wait for a reply from the
web service before it can continue processing a policy. If Netcool/Impact does not
receive a reply in the specified time frame, the DSA times out and returns an error
message to Netcool/Impact.

During policy run time, simple object access protocol (SOAP) messages are sent
through the DSA to the specified web service. The message structure is defined by
a web services definition language (WSDL) file. The message content is defined in
the policy.

After the DSA sends a message, it waits for a reply from the web service. When
the DSA receives the reply, the returned data is converted into data items and
returned to the Impact Server for further processing in the policy.

You do the following tasks when working with the web services DSA:
v Compile WSDL files that are associated with the interfaces provided by a web

service.
v Create and configure a web services listener that listens on an HTTP port for

SOAP/XML messages from external applications.
v Write policies that send messages to a web services interface and handle the

message replies.
v Write policies that handle SOAP/XML messages received by the web services

listener.

Migrating web services DSA
Use one of the following methods to run policies you created in earlier versions of
Netcool/Impact on the current version. The options differ if you decide to
recompile the WSDL file or not

© Copyright IBM Corp. 2006, 2014 33

About this task

Your policies that were developed in Tivoli Netcool/Impact 4.x and 3.x continue to
run without modification on the current version of Impact Server. If you recompile
your WSDL file with the current version of nci_compile_wsdl script and want to
use the new JAR file, you must rewrite your policy with new web services DSA
functions.

Note: The WSDL file that defines a rpc/encoded style web service cannot be
compiled by nci_compilewsdl in Tivoli Netcool/Impact 5.1 or higher. The web
services DSA in the current version of Netcool/Impact do not support
rpc/encoded web services. Rpc/literal and Document/literal are supported web
services styles. However, if you reuse the web service client JAR files generated by
Netcool/Impact 3.x or 4.x from rpc-encoded style WSDL files, your old polices will
run on the current version of Netcool/Impact without changes.

Procedure
1. Copy your old JAR files to the $IMPACT_HOME/wslib directory.
2. Create a policy and then copy and paste policy codes from your old policy.
3. Save the policy.
4. Run the policy.

Compiling WSDL files
Before you can use the web services DSA, you must compile a Web Services
Description Language (WSDL) file.

When you compile a WSDL file, you create a set of Java class files that contain a
programmatic representation of the WSDL data. This representation is then used
by the web services DSA when it sends messages to the web service and handlesv
message replies.

WSDL files are XML documents that describe the public interface that is provided
by a web service.

To compile the WSDL, you complete the following tasks:
1. Obtain the WSDL file for the web service.
2. Run the WSDL compiler script.
3. The JAR files are created in the $IMPACT_HOME/wslib directory on the primary

server. Copy the JAR files from the $IMPACT_HOME/wslib directory to all the
secondary servers.

Note: If the WSDL file contains XSD imports, files are provided separately. The
WSDL files and related XSD files must be placed in a directory with no spaces.

For more information about WSDL files, see the Web Services Description Working
Group home page on the W3C website at http://www.w3c.org/2002/ws/desc.

Obtaining WSDL files
Every web service must provide one or more Web Services Description Languages
(WSDL) files that define its public interfaces. WSDLs are available from known
URLs.

34 Netcool/Impact: DSA Reference Guide

http://www.w3c.org/2002/ws/desc

Procedure

Use a version of the WSDL file that defines the simple object access protocol
(SOAP) interface for the web service with the web services DSA. WSDL files are
most often made available by a web service at a known URL. For example, the
web service WSDL for a real-time stock quote service is available at
http://www.webservicex.net/stockquote.asmx?wsdl. You can compile a WSDL by

using its URL or by using a copy of the file that is stored locally in your file
system.

Running the WSDL compiler script
The WSDL compiler script, nci_compilewsdl, creates a JAR file that contains a
programmatic representation of the WSDL data.

Procedure
1. Navigate to the $IMPACT_HOME/bin directory.
2. At the command prompt run the compiler script with the following options:

nci_compilewsdl package_name wsdl_file
destination

Table 16 contains descriptions of the command-line arguments for this script.

Table 16. WSDL compiler script command line arguments

Argument Argument description

package_name Name of the JAR file (without the .jar suffix) to be created by the script.

wsdl_file The fully qualified URL of the WSDL file, or the location of the WSDL file
on the local file system. The script looks for the file in the $IMPACT_HOME
directory by default. You can also specify the absolute path to the file.

destination The directory to copy the generated JAR to. Default is $IMPACT_HOME/wslib

You must enter the entire command in one line, without any line breaks. For
example on UNIX:
./nci_compilewsdl amazon US.wsdl $IMPACT_HOME/wslib

The example command compiles a WSDL file, US.wsdl that is located in the
current working directory, and creates the amazon.jar file, in the
$IMPACT_HOME/wslib directory.
Another example shows how to compile a WSDL file located at a URL:
./nci_compilewsdl weather
http://www.webservicex.net/WeatherForecast.asmx?WSDL ../wslib

The weather.jar file, is created under $IMPACT_HOME/wslib directory.
3. Optional: If the destination directory for the script was different than the

default one, you must copy the generated Jar file into the $IMPACT_HOME/wslib
directory.

Recompiling new and changed WSDL files
If you change an existing WSDL file or add a new file that uses classes from an
existing WSDL file, you must clear the cache and compile the WSDL file again.

About this task

Netcool/Impact uses the Java archive files that the Java virtual machine stores in
the $IMPACT_HOME/wslib directory. You must clear this cache so Netcool/Impact can
process the changes included in the newly compiled WSDL file.

Chapter 5. Working with the web services DSA 35

Procedure
1. Change an existing WSDL file or create a new file that references an existing

file.
2. Move all the Java archive files from the $IMPACT_HOME/wslib directory to a

temporary location.
3. Restart Netcool/Impact.
4. Compile the WSDL file.
5. If the compiled WSDL file is not saved to the $IMPACT_HOME/wslib directory,

move the new JAR file to the $IMPACT_HOME/wslib directory.
6. Move all the Java archive files, except for the files that you either changed or

referenced in your new WSDL file, from the temporary directory to the
$IMPACT_HOME/wslib directory. If you do copy the files that you changed, your
changes are overwritten with the original file.

Compiling WSDL files on Windows platforms
Before you can use the web services DSA on a Windows platform, you must
compile a Web Services Description Language (WSDL) file for the web service.

When you compile a WSDL file, you create a set of Java class files that contain a
programmatic representation of the WSDL data. This representation is then used
by the web services DSA when it sends messages to the web service and handles
message replies.

To compile the WSDL, complete the following tasks:
1. Stop Netcool/Impact.
2. Obtain the WSDL file for the web service.
3. Run the WSDL compiler script.
4. The JAR files are created in the $IMPACT_HOME/wslib directory on the primary

server. Copy the JAR files from the $IMPACT_HOME/wslib directory to all the
secondary servers.

Note: If the WSDL file contains XML schema definition (XSD) imports, these files
are provided separately. The WSDL files and related XSD files must be placed in a
directory with no spaces.

WSDL files are XML documents that describe the public interface that is provided
by a web service. For more information about WSDL files, see the web Services
Description Working Group home page on the W3C website at
http://www.w3c.org/2002/ws/desc.

Web services DSA functions
The web services DSA provides a set of special functions that you use to send
messages from Netcool/Impact to a web service.

The web services DSA functions are:
v WSSetDefaultPKGName

v WSNewObject

v WSNewSubObject

v WSNewArray

v WSNewEnum

36 Netcool/Impact: DSA Reference Guide

http://www.w3c.org/2002/ws/desc

v WSInvokeDL

WSSetDefaultPKGName
The WSSetDefaultPKGName function sets the default package that is used by
WSNewObject and WSNewArray.

The package name is the name that you supplied to the nci_compilewsdl script
when you compiled the WSDL file for the web service. It is also the name of the
JAR file that is created by this script, without the .jar suffix.

Syntax

This function has the following syntax:
WSSetDefaultPKGName(PackageName)

Parameters

The WSSetDefaultPKGName function has the following parameter.

Table 17. WSSetDefaultPKGName function parameter

Parameter Format Description

PackageName String Name of the default WSDL package used by
WSNewObject and WSNewArray.

Example

The following example sets the default package that is used by subsequent calls to
WSNewObject and WSNewArray to google.
WSSetDefaultPKGName("google");

WSNewObject
The WSNewObject function creates an object of a complex data type as defined in
the WSDL file for the web service.

You use this function when you are required to pass data of a complex type to a
web service as a message parameter.

Syntax

This function has the following syntax:
Object = WSNewObject(ElementType)

Parameters

This WSNewObject function has the following parameter.

Table 18. WSNewObject function parameter

Parameter Format Description

ElementType String Name of the complex data type that is defined in
the WSDL file. The name format is
[Package.]TypeName, where Package is the name of
the package you created when you compiled the
WSDL file, without the .jar suffix.

Chapter 5. Working with the web services DSA 37

Return Value

A new web services object.

Examples

The following example shows how to use WSNewObject to create a web services
object, what you previously called WSSetDefaultPKGName in the policy. This example
creates an object of the data type ForwardeeInfo as defined in the mompkg.jar file
compiled from the corresponding WSDL.
// Call WSSetDefaultPKGName
WSSetDefaultPKGName("mompkg");

// Call WSNewObject

MyObject = WSNewObject("ForwardeeInfo");

The following example shows how to use WSNewObject to create a web services
object, where you did not previously call WSSetDefaultPKGName in the policy.
// Call WSNewObject

MyObject = WSNewObject("mompkg.ForwardeeInfo");

WSNewSubObject
The WSNewSubObject function creates a child object that is part of its parent
object and has a field or attribute name of ChildName.

Syntax

This function has the following syntax:
Object = WSNewSubObject(ParentObject, ChildName)

Parameters

This WSNewSubObject function has the following parameters.

Table 19. WSNewSubObject function parameters

Parameter Format Description

ParentObject String Name of the parent object

ChildName String Name of the new child object

Return Value

A new web services child object.

Examples

The following example shows how to use WSNewSubObject to create a web services
child object:
// Call WSNewSubObject

ticketId=WSNewSubobject(incident, “TICKETID");

38 Netcool/Impact: DSA Reference Guide

WSNewArray
The WSNewArray function creates an array of complex data type objects or
primitive values, as defined in the WSDL file for the web service.

You use this function when you are required to pass an array of complex objects or
primitives to a web service as message parameters.

Syntax

This function has the following syntax:
Array = WSNewArray(ElementType, ArrayLength)

Parameters

The WSNewArray function has the following parameters:

Table 20. WSNewArray function parameters

Parameter Format Description

ElementType String Name of the complex object or primitive data type that is
defined in the WSDL file. The name format is
[Package.]TypeName, where Package is the name of the
package you created when you compiled the WSDL file,
without the .jar suffix. The package name is required
only if you did not previously call the
WSSetDefaultPKGName function in the policy.

ArrayLength Integer Number of elements in the new array.

Return Value

The WSNewArrayreturns the new array that is created by the function.

Examples

The following example shows how to use WSNewArray to creates a web services
array, where you previously called WSSetDefaultPKGName in the policy. This
example creates an array of the data type String as defined in the mompkg.jar file
that is compiled from a WSDL file.
// Call WSSetDefaultPKGName

WSSetDefaultPKGName("mompkg");

// Call WSNewArray

MyArray = WSNewArray("String", 4);

The following example shows how to use WSNewArray to create a web services
array, where you did not previously call WSSetDefaultPKGName in the policy.
// Call WSNewArray

MyArray = WSNewArray("mompkg.String", 4);

WSInvokeDL
The WSInvokeDL function makes web services calls when a Web Services
Description Language (WSDL) file is compiled with nci_compilewsdl, or when a
web services DSA policy wizard is configured.

Chapter 5. Working with the web services DSA 39

Syntax

This function has the following syntax:
[Return] = WSInvokeDL(WSService, WSEndPoint, WSMethod, WSParams, [callProps])

This function returns the value of your target web services call.

Parameters

The WSInvokeDL function has the following parameters:

Table 21. WSInvokeDL function parameters

Parameter Format Description

WSService String This web service name is defined in the /definitions/service
element of the WSDL file.

WSEndPoint String The web service endpoint URL of the target web service.

WSMethod String The web service method defines which method you would like
to call in WSInvokeDL().

WSParams Array The web services operation parameters are defined by
/definitions/message/part elements in the WSDL file. It
comprises an array that contains all of the parameters that are
required by the specified web service operation.

callProps String,
Boolean,
integer

The optional container in which you can set any of the
properties, which are listed in the callProps properties section.

callProps properties

Remember: Any options that are set in callProps must precede the actual call to
WSInvokeDL.
v Chunked specifies whether the request can be chunked.
v MTOM enables or disables the Message Optimization for the SOAP message.
v CharSet sets the encoding other than UTF-8.
v HTTP the default HTTP version is 1.1. You can use this property to set the

protocol version to 1.0.
v ReuseHttpClient enables the underlying infrastructure to reuse the HTTP client

if one is available. The ReuseHttpClient is useful if the client is using HTTPS to
communicate with the server. The SSL handshake is not repeated for each
request. The parameter must be set to true or false.

v EnableWSS enables web Service Security. If you specify EnableWSS, you must also
specify the following properties:
– WSSRepository, which specifies the path location of WSS Repository.
– WSSConfigFile, which specifies configuration file for EnableWSS.

v Username specifies the user name for basic authentication.
v Password specifies the password for basic authentication.
v PreemptiveAuth enables Preemptive Authentication.
v Timeout this property is used in a blocking scenario. The client system times out

after it has waited the specified amount of time.
You can optionally set a global web Service DSA call timeout property called
impact.server.dsainvoke.timeout. The property must be added to the
Netcool/Impact server property file, <servername>_server.props.

40 Netcool/Impact: DSA Reference Guide

The value is set in milliseconds, for example,
impact.server.dsainvoke.timeout=30000 (30 seconds).
When you set the properties in any of the .props files, restart theNetcool/Impact
server to implement the changes.
If the impact.server.dsainvoke.timeout property is set, all WSInvokeDL calls
use the same timeout setting.

v MaintainSession sets the session management to enabled status. When session
management is enabled, the system maintains the session-related objects across
the different requests. The parameter must be set to true or false.

v CacheStub caches generated stubs. This value must be set to true if either or
both of the following properties are enabled, ReuseHttpClient, MaintainSession.
Examples of usage:
callProps.CacheStub=true;

callProps.ReuseHttpClient = true;

Examples

Remember: Any options that are set in callProps must precede the actual call to
WSInvokeDL.

Apart from its primary usage, the callProps container can be used to enable
security. For example, if the basic authentication is enabled through the wizard, the
sample policy contains the following lines:
callProps.Username="username";
callProps.Password="password";

The following example shows how to use the WSInvokeDL function to send a
message to the target web service.

Example using IPL:
ServiceName = "StockQuote";
EndPointURL = "http://www.webservicex.net/stockquote.asmx"
MethodName = "GetQuote";
ParameterArray = { "IBM" }

[Return] = WSInvokeDL(WSService, WSEndPoint, WSMethod, WSParams, [callProps])

Example using JavaScript:
ServiceName = "StockQuote";
EndPointURL = "http://www.webservicex.net/stockquote.asmx";
MethodName = "GetQuote";
ParameterArray = ["IBM"];

Results = WSInvokeDL(WSService, WSEndPoint, WSMethod, WSParams, [callProps])

WSNewEnum
The WSNewEnum function returns an enumeration value to a target web service.

Syntax

This function has the following syntax:
[Return] = WSNewEnum(EnumType, EnumValue);

Chapter 5. Working with the web services DSA 41

Parameters

The WSNewEnum function has the following parameters.

Table 22. WSNewEnum function parameters

Parameter Format Description

EnumType String The enumeration class name that exists in the package
that is created by nci_compilewsdl

EnumValue String The enumeration value to return

Return Value

A new enumeration type and value.

Example

The following example shows how to use the WSNewEnum function to send a
message to the target web service.
euro = WSNewEnum("net.webservicex.www.Currency", "EUR");
usd = WSNewEnum("net.webservicex.www.Currency", "USD");

Writing Web services DSA policies
You can complete the following tasks with the web services DSA in a
Netcool/Impact policy:
v Send messages to a web service
v Handle data that is returned from a web service as a message reply

Sending messages
You can use the web services DSA to send messages.

Procedure
1. Call WSSetDefaultPKGName.
2. Add message parameters with any required data.
3. Call WSInvokeor WSInvokeDL.

When a WSDL file is compiled with nci_compilewsdl or by the web services
DSA wizard, you must use the WSInvokeDL() function to make web services
calls.

Calling WSSetDefaultPKGName
The default package used for communication with the web service is set by the
WSSetDefaultPKGName function.

The package name can be the name you supplied to the nci_compilewsdl script
when you compiled the WSDL file for the web service. This name is also the name
of the JAR file created by this script, without the .jar suffix. The package name
can also be any other Java package that resides in the CLASSPATH and contains the
class definition of an object you want to use with the WSNewObject or WSNewArray
functions (for example, java.util).

To set the default package, you call WSSetDefaultPKGName and pass the name of the
package, without the .jar suffix.

42 Netcool/Impact: DSA Reference Guide

Example

The following example shows how to set the default package:
WSSetDefaultPKGName("google");

In this example, google.jar is the package you created when you compiled the
WSDL file for the web service.

Note: If you do not call this function before you call WSNewArray or WSNewObject,
you must explicitly specify the package name in those function calls.

Examples using web services DSA functions

The following examples illustrate how the web services DSA functions and
demonstrates its abilities.

Example using web services DSA functions to create a real-time
stock quote service

You can call a combination of web services DSA functions to create a policy. In IPL,
you can use the syntax varName.subVarName = value to set a variable. In JavaScript,
you use a set method to set a variable, which is the the syntax is
varName.setsubVarName(value). Here is an example that usesWSSetDefaultPKGName,
WSNewObject, WSNewSubObject, and WSInvokeDL functions in a policy in IPL:
WSSetDefaultPKGName("impactstockquote");
endpoint ="http://www.webservicex.net/stockquote.asmx";

quoteDoc=WSNewObject("net.webservicex.www.GetQuoteDocument");

quote = WSNewSubObject(quoteDoc, "GetQuote");
quote.Symbol="IBM";

params = { quoteDoc };
return = WSInvokeDL("StockQuote", endpoint, "GetQuote", params);
result = return.GetQuoteResponse.GetQuoteResult;
log("result = " + result);

The following example is the same but uses JavaScript, where the params =
[quoteDoc]; value is enclosed in braces ([]).
WSSetDefaultPKGName("impactstockquote");
endpoint ="http://www.webservicex.net/stockquote.asmx";

quoteDoc=WSNewObject("net.webservicex.www.GetQuoteDocument");

quote = WSNewSubObject(quoteDoc, "GetQuote");
quote.setSymbol("IBM");

params = [quoteDoc];
return = WSInvokeDL("StockQuote", endpoint, "GetQuote", params);
result = return.GetQuoteResponse.GetQuoteResult;
log("result = " + result);

Example that uses web services DSA functions to create a
Global Weather service

The policy in IPL included the following web services DSA functions:
WSSetDefaultPKGName, WSNewObject, WSNewSubObject, and WSInvokeDL.

Chapter 5. Working with the web services DSA 43

WSSetDefaultPKGName("impactglbweather");
endpoint ="http://www.webservicex.net/globalweather.asmx";
weatherdoc=WSNewObject("net.webservicex.www.GetWeatherDocument");

weather = WSNewSubObject(weatherdoc, "GetWeather");
weather.CityName = "New York";
weather.CountryName = "United States";
params = { weatherdoc };
return = WSInvokeDL("GlobalWeather", endpoint, "GetWeather", params);
result = return.GetWeatherResponse.GetWeatherResult;
log("result = " + result);

The following example is the same but uses JavaScript, where the params value is
enclosed in braces ([]).
WSSetDefaultPKGName("impactglbweather");
endpoint ="http://www.webservicex.net/globalweather.asmx";
weatherdoc=WSNewObject("net.webservicex.www.GetWeatherDocument");

weather = WSNewSubObject(weatherdoc, "GetWeather");
weather.setCityName("New York");
weather.setCountryName("United States");
params = [weatherdoc];
return = WSInvokeDL("GlobalWeather", endpoint, "GetWeather", params);
result = return.GetWeatherResponse.GetWeatherResult;
log("result = " + result);

Example that uses web services DSA functions to create a
currency converter service

The policy in IPL, includes the following web service DSA functions:
WSSetDefaultPKGName, WSNewObject, WSNewSubObject, WSInvokeDL, and WSNewEnum.
WSSetDefaultPKGName("impactcurrencyconverter");
endpoint ="http://www.webservicex.net/CurrencyConvertor.asmx";
convDoc=WSNewObject("net.webservicex.www.ConversionRateDocument");

rate = WSNewSubObject(convDoc, "ConversionRate");

fromCur = WSNewEnum("net.webservicex.www.Currency", "EUR");
rate.FromCurrency = fromCur;
toCur = WSNewEnum("net.webservicex.www.Currency", "USD");
rate.ToCurrency = toCur;

params = { convDoc };
return = WSInvokeDL("CurrencyConvertor", endpoint, "ConversionRate", params);
result = return.ConversionRateResponse.ConversionRateResult;
log("result = " + result);
log("--------------------------------");

The following example is the same but uses JavaScript, where the params value is
enclosed in square braces [].
WSSetDefaultPKGName("impactcurrencyconverter");
endpoint ="http://www.webservicex.net/CurrencyConvertor.asmx";
convDoc=WSNewObject("net.webservicex.www.ConversionRateDocument");

rate = WSNewSubObject(convDoc, "ConversionRate");

fromCur = WSNewEnum("net.webservicex.www.Currency", "EUR");
rate.setFromCurrency(fromCur);
toCur = WSNewEnum("net.webservicex.www.Currency", "USD");
rate.setToCurrency(toCur);

params = [convDoc];

44 Netcool/Impact: DSA Reference Guide

return = WSInvokeDL("CurrencyConvertor", endpoint, "ConversionRate", params);
result = return.ConversionRateResponse.ConversionRateResult;
log("result = " + result);
log("--------------------------------");

Web services listener
The web services listener is a service that provides a Netcool/Impact web services
interface to other applications to run Netcool/Impact policies.

Before you can use the web services listener, you must assign the
impactFullAccessUser and bsmAdministrator roles to the user who uses the web
services. For more information, see the Authentication for the web services listener
topic in the Netcool/Impact information center or in the DSA Reference Guide PDF
file.

Web services listener process
Policy requests from external applications are managed by the web services
listener.

The web services listener listens at an HTTP port for SOAP/XML messages from
external applications. These messages make requests to Netcool/Impact to run a
policy. When the listener receives a request, it sends it to the Netcool/Impact
policy engine along with any runtime parameters and returns the policy results to
the calling application via the HTTP port.

The requests can also be made over HTTPS protocol.

WSDL file
The Web Services Description Language (WSDL) file is an XML document that
describes the web services interface.

The WSDL file specifies five messages that define the terms of communication
between Tivoli Netcool/Impact and calling applications. These messages allow
calling applications to log in to Tivoli Netcool/Impact and to request that a policy
be run. The messages are also used to respond to login requests and return policy
results. The WSDL file also specifies the types of data that can be passed in the
body of the messages.

Setting up the web services listener
The web services listener is automatically installed when you install
Netcool/Impact.

Before you can use the web services listener, you must assign the
impactFullAccessUser and bsmAdministrator roles to the user who uses the web
services. For more information, see the Authentication for the web services listener
topic in the Netcool/Impact information center or in the DSA Reference Guide PDF
file.

Following the installation, you can obtain the web services client information,
including the WSDL file and a set of utilities that help you work with web
services, at the $IMPACT_HOME/integrations/web-service-listener directory. Table
1 shows the files that are provided with the web services listener:

Chapter 5. Working with the web services DSA 45

Table 23. Web Services Listener contents

File Description

ImpactWebServiceListenerDL.wsdl Web service listener WSDL File.

WSListenerTestPolicy.ipl Sample Policy.

WSTestDL.java Sample client.

README Readme file.

bin/test_wslistener Script that runs the sample client.

/lib This directory contains JAR files for sample
application.

$IMPACT_HOME/bin/nci_findendpoint.sh Script that you can use to find the SOAP
endpoint for an Impact Server.

Writing web services listener policies
Web service listener policies are run in response to web messages that are sent to
Tivoli Netcool/Impact from other applications.

The web messages that are sent to Tivoli Netcool/Impact specify the name of the
policy to be run and a set of runtime parameters. External applications use runtime
parameters to pass data to the policy. The web services listener does not pass an
event container to the policy engine. Web services listener policies return data to
calling applications in the form of a data item that is called WSListenerResult. The
policies return one data item at a time.

Runtime parameters
You can use Netcool/Impact to define parameters in a web services listening
policy that, when triggered, automate, a policy.

Runtime parameters in web services listener policies are handled in the same way
web services listener policies handles runtime parameters in any other policy. You
can use the variable name to reference the parameters in the policy. No
initialization of the variables is required.

For example, if an incoming web services message contains runtime parameters
named Param1, Param2, and Param3, when it runs the policy the web services
listener creates new variables in the policy context with those parameter names.
The following code shows how to reference those variables in a policy:
// Log incoming runtime parameters

Log("Value of Param1: " + Param1);
Log("Value of Param2: " + Param2);
Log("Value of Param3: " + Param3);

Note that all runtime parameters in a web services listener policy are strings. No
other type of value can be passed to such a policy from calling applications.

WSListenerResult
WSListenerResult is a special data item that contains the result of a web services
policy.

46 Netcool/Impact: DSA Reference Guide

You can use NewObject function to create the WSListenerResult data and populate
its member variables with values. When the policy terminates, this data item is
passed to the web services listener to be returned to the calling application.

The following example shows how to create the WSListenerResult data item and
populate its member values.
WSListenerResult = NewObject();
WSListenerResult.Node = "192.168.1.1";
WSListenerResult.Location = "New York";
WSListenerResult.Summary = "Node not responding to ping.";

WSListenerResult can contain other data types. The caller parses the object to get
the right data from the result. The name contains the field name through which the
caller can identify the type of data that is used.

For example, the "SERVICEREQUESTIDENTIFIER" column from the database, is
an Integer.

The assignment WSListenerResult.SERVICEREQUESTIDENTIFIER=_result[0]
.SERVICEREQUESTIDENTIFIER assigns the Integer value to the result. The result is the
return value from the GetByFilter function. If the value of the service request is "1",
then:
v The getValue method from the policyExecutionResult returns 1.
v The getName method from the policyExecutionResult returns

SERVICEREQUESTIDENTIFIER.

Writing applications that call into Web services

When you write applications that call into the Web services, you must have the
following information:
v Location of the SOAP endpoint.
v WSDL file.

SOAP endpoint
The Simple Object Access Protocol (SOAP) endpoint is a URL. It identifies the
location on the built-in HTTP service where the web services listener listens for
incoming requests. Calling applications must specify this endpoint when they send
web services messages to Netcool/Impact.

The endpoint URL varies depending on the configuration of Netcool/Impact. The
default is:
http://<hostname>:<port>/<clustername>_
<servername>_jaxrpc/impact/ImpactWebServiceListenerDLIfc".

where <hostname> is the name of the system where Netcool/Impact is installed,
<port> is the port number that is used by the built-in HTTP service,
<clustername>is the name of the server cluster, and <servername>is the name of the
Impact Server instance. The default port number is 9080.

The following example shows the endpoint URL for a web services listener that is
running on a system named impact_01 using the default port, where the name of
the server cluster is NCICLUSTER and the name of the server instance is NCI.
http://impact_01:9080/NCICLUSTER_NCI_jaxrpc/impact/ImpactWebServiceListenerDLIfc".

Chapter 5. Working with the web services DSA 47

You can also determine the SOAP endpoint by using the nci_findendpoint script
in the $IMPACT_HOME/bin directory. When you run this script, it connects to the
Netcool nameserver, looks up the SOAP endpoint, and prints the URL to the
standard output. The syntax of nci_findendpoint is as follows:
nci_findendpoint server_name

where server_name is the name of the Impact Server cluster (for example, NCI).

Authentication for the web services listener
Before you can use the web services listener, you must assign the
impactFullAccessUser and bsmAdministrator roles to the user who uses the web
services.

When the external application connects to a web service URL, it uses http
authentication. The first time an external application does this, it prompts the user
for a user name and password. After you enter the user name and password,
Netcool/Impact uses the user name and password that the user enters for future
authentications. To facilitate these authentications, you must assign the
bsmAdministrator role to the user who uses the web services listener.

When the web service listener connects to Netcool/Impact to run a policy, it
requests a Netcool/Impact user name and password to authenticate. This user
must have the authorization to run policies. To assign this authorization to the
user, assign the impactFullAccessUser role to the user who uses the web services
listener.

For more information about how to assign these roles, see Working with
command-line tools > Using WebServices through the command line > Mapping
groups, and users to roles on the Netcool/Impact information center at or in the
Administration Guide PDF file.

WSDL file
The Web Services Description Language (WSDL) file is an XML document that
describes the web services interface.

The WSDL file specifies five messages that define the terms of communication
between Tivoli Netcool/Impact and calling applications. Calling applications use
these messages to log in to Tivoli Netcool/Impact and to request the execution of a
policy. You can also use the messages to respond to login requests and return
policy results. The WSDL file also specifies types of data that can be passed in the
body of the messages.

The WSDL specifies the following messages:
v ImpactWebServiceListener_login

v ImpactWebServiceListener_loginResponse

v ImpactWebServiceListener_runPolicy

v ImpactWebServiceListener_runPolicyResponse

v WSListenerException

ImpactWebServiceListener_login
The ImpactWebServiceListener_login message requests a login to the Impact
Server.

User access for the impactFullAccessUser roles is needed to complete the task.

48 Netcool/Impact: DSA Reference Guide

Table 1 shows the parameters in ImpactWebServiceListener_login.

Table 24. ImpactWebServiceListener_login Message Parameters

Parameter Description

userID The user must be either the tipadmin user or
a user with the bsmAdminstrator role
assigned. For more information about how
to assign these roles, see Working with
command-line tools, Using WebServices through
the command line and the topic Mapping
groups, and users to roles in Netcool/Impact
information center or in the Administration
Guide PDF file.

password Valid password.

The calling application must send a ImpactWebServiceListener_login message
before it sends any other messages. The web services listener responds by
returning a message of type ImpactWebServiceListener_loginResponse.

ImpactWebServiceListener_loginResponse
The ImpactWebServiceListener_loginResponse message is sent by the web services
listener in response to a login request from a calling application.

The ImpactWebServiceListener_loginResponse contains a single parameter named
result. The value of this parameter is an object ID that identifies the login session.
Additional calls to the web services interface from the calling application must
pass the login ID.

ImpactWebServiceListener_runPolicy
The ImpactWebServiceListener_runPolicy message requests that Tivoli
Netcool/Impact run the specified policy.

Table 1 shows the parameters in ImpactWebServiceListener_runPolicy.

Table 25. ImpactWebServiceListener_runPolicy

Parameter Description

objId Result value that is returned by
ImpactWebServiceListener_loginResponse. This value identifies the
login session for the calling application.

policyName Name of the policy to be run.

policyUserParams Array of runtime parameters to pass to the policy, where each
parameter is represented in the WSDL file as a variable of the
complex type WSPolicyUserParameter. You must set the values of
the format, name, and value elements of each parameter in the order
that they are displayed in the WSDL file. The required value of the
format element is String. The value of the name element is the
name of the parameter as it will be handled in the policy. The value
of the value element is the parameter value.

wantResult Specifies whether to return the results of the policy to the calling
application.

A calling application sends this message after it completes a successful login. The
web services listener responds by returning a message of type
ImpactWebServiceListener_runPolicyResponse.

Chapter 5. Working with the web services DSA 49

ImpactWebServiceListener_runPolicyResponse
The ImpactWebServiceListener_runPolicyResponse message is sent by the web
services listener in response to a request from a calling application to run a policy.

The ImpactWebServiceListener_runPolicyResponse contains a single parameter
result. This parameter contains an array of name-value pairs that correspond to
the member variables in the WSListenerResult data item that is returned by the
policy.

The web services listener sends this message to a calling application if the
wantResult parameter was specified as true in the originating
ImpactWebServiceListener_runPolicy message.

WSListenerException
The WSListenerException message is sent by the web services listener in response
to invalid messages from a calling application.

The WSListenerException contains a single parameter named WSListenerException
that provides detail about the error.

Creating policies by using the web services wizard
You can use the web Services wizard to develop policies. To do so, you connect to
the GUI and follow the on-screen prompts.

Procedure
1. In the Policies tab, select the arrow next to the New Policy icon. To open

theWeb Service Invoke-Introduction window select Use Wizard > Web
Services.

2. In the Web Service Invoke-Introduction window, type in your policy name in
the Policy Name field, and click Next to continue.

3. In the Web Service Invoke-WSDL file and client stub window, in the URL or
Path to WSDL field, enter the URL or a path for the target WSDL file.
In instances where the GUI server is installed separately from the back-end
server, the file path for the WSDL file refers to the back-end server file system,
not the GUI server file system. If you enter a URL for the WSDL file, that URL
must be accessible to the back-end Impact Server host and the GUI server host.

Note: If the WSDL file contains XSD imports, these files are provided
separately. The WSDL files and related XSD files must be placed in a directory
with no spaces.

4. In the Client Stub area, select one of the following available options:
v Select a previously generated client stub for the above WSDL file:

Select one of the existing client stub files from the list menu.
– Currency.jar

– Stock.jar

– length.jar

The Package Name field is automatically completed. Select the Edit check
box to modify the package name.

v Provide a package name for the new client stub:

Select this option to create a client stub file. Complete the Package Name
field for the new client stub file.

50 Netcool/Impact: DSA Reference Guide

Click Next.
5. In the Web Service Invoke-Web Service Name, Port and Method window, select

the general web service information for the following items: Web Service, Web
Service Port Type, and Web Service Method. Click Next.

6. In the Web Service Invocation - Web Service Method parameters window, enter
the parameters that are required by the target web service method and break
down the complex parameter to simple types. Click Next.

7. Optional: In the Web Service Invoke-Web Service EndPoint window, you can
edit the URL or Path to WSDL by selecting the edit check box. To enable web
service security, select the Enable web service security service check box. Select
one of the following authentication types:
v HTTP user name authentication

v SOAP message user name authentication

Add the User name and Password. Click Next.

8. The Web Service Invoke-Summary and Finish window is displayed. It shows
the details of the policy. Click Finish to create the policy.

Creating policies by using policy editor
You can use the policy editor to develop policies.

Procedure
1. Get the latest WSDL file which must match your target web service.
2. Determine the endpoint of your target running web service.
3. Run the $IMPACT_HOME/impact/bin/nci_compilewsdl script to compile the target

WSDL file. Always place the output JAR file to $IMPACT_HOME/wslib directory.
Otherwise, Netcool/Impact is not able to find the JAR file at run time.

4. Use policy editor or your favorite editor to write your policy to make web
services calls.

5. Run the policy that you created.

Sample policy and sample client
A sample policy and a sample client, which you can use to learn about web
services listener.
v WSListenerTestPolicy.ipl - sample policy.
v WSTestDL.java - sample client.

They are in the $IMPACT_HOME/integrations/web-service-listener directory. You
can run the sample client by using the test_wslistener script that is in the
$IMPACT_HOME/integrations/web-service-listener/bin directory.
1. To create a Java Client to connect to the web services listener, use the

WSTestDL.java file that is in the $IMPACT_HOME/integrations/web-service-
listener directory.

2. To start the policy by using the XML Soap Envelop client such as SoapUI.
v Login call

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:typ="http://response.micromuse.com/types">

<soapenv:Header/>
<soapenv:Body>

<typ:login>
<String_1>impact_user_name</String_1>

Chapter 5. Working with the web services DSA 51

<String_2>impact_password</String_2>
</typ:login>

</soapenv:Body>
</soapenv:Envelope>:

v Run a policy with one input parameter that does not return a result.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:typ="http://response.micromuse.com/types">

<soapenv:Header/>
<soapenv:Body>

<typ:runPolicy>
<WSListenerId_1>

<clientId>impact_user_name</clientId>
<objectId>result_from_Login_call</objectId>

</WSListenerId_1>
<String_2>PolicyTestName</String_2>
<!--Zero or more repetitions:-->
<arrayOfWSPolicyUserParameter_3>

<desc>ProductName</desc>
<format>String</format>
<label>ProductName</label>
<name>ProductName</name>
<value>Impact 6.1.1</value>

</arrayOfWSPolicyUserParameter_3>
<boolean_4>false</boolean_4>

</typ:runPolicy>
</soapenv:Body>

</soapenv:Envelope>

v Run a policy with multiple input parameters that returns a result.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:typ="http://response.micromuse.com/types">

<soapenv:Header/>
<soapenv:Body>

<typ:runPolicy>
<WSListenerId_1>

<clientId>impact_user_name</clientId>
<objectId>result_from_Login_call</objectId>

</WSListenerId_1>
<String_2>PolicyTestName</String_2>
<!--Zero or more repetitions:-->
<arrayOfWSPolicyUserParameter_3>

<desc>ProductName</desc>
<format>String</format>
<label>ProductName</label>
<name>ProductName</name>
<value>Impact 6.1.1</value>

</arrayOfWSPolicyUserParameter_3>

<arrayOfWSPolicyUserParameter_4>
<desc>Company</desc>
<format>String</format>
<label>Company</label>
<name>Company</name>
<value>IBM</value>

</arrayOfWSPolicyUserParameter_4>

<arrayOfWSPolicyUserParameter_5>
<desc>Version</desc>
<format>Integer</format>
<label>Version</label>
<name>Version</name>
<value>7</value>

</arrayOfWSPolicyUserParameter_5>

52 Netcool/Impact: DSA Reference Guide

<boolean_4>false</boolean_4>
</typ:runPolicy>

</soapenv:Body>
</soapenv:Envelope>

Integration with third-party web services
Sometimes in the development phase you must change your wsdl file and reuse
Netcool/Impact web services wizard for testing purposes. Because JVM caches the
loaded classes, the wizard cannot recognize the latest changes. Use this procedure
to clear the cache.

Procedure
1. Stop the embedded version of WebSphere Application Server.
2. Remove the old JAR file from the $IMPACT_HOME/wslib directory.
3. Start the embedded version of WebSphere Application Server.
4. Run the wizard to generate the policy.

Chapter 5. Working with the web services DSA 53

54 Netcool/Impact: DSA Reference Guide

Chapter 6. Web services security

Web service DSA has limited support to Web services security standard defined by
Oasis-Open. The following security features are supported:
v User name token authentication
v User name token authentication with a plain text password
v Message integrity and non-repudiation with signature
v Encryption
v Sign and encrypt messages

Enabling web services security
Use the following method to enable web message level web services security. You
can enable HTTP basic authentication (transport level security) by adding an
optional module into the policy.

Procedure
1. Stop all the Impact Servers in the cluster.
2. Complete the following steps for the primary Impact Server. These changes are

replicated to the secondary servers in the cluster.
a. Update the <IMPACT_HOME>/dsa/wsdsa/wss/conf/wss.xml file in your Tivoli

Netcool/Impact installation directory to set up security features that are
required by your web service calls. For most cases, you must update two
related XML elements, which are OutflowSecurity and possibly
InflowSecurity in your wss.xml file.

b. Update the <IMPACT_HOME>/dsa/wsdsa/wss/conf/wscb.properties file to set
up user ID and password that is required by particular security features.
For example, UsernameToken or Signature. This file has the following
format:
num=1
uid.1=client
pwd.1=apache

Note: If there is more than entry in the file, only the uid.1 and pwd.1 will
be read.

3. Complete the following steps for each Impact Server in the cluster:
a. Remove the org.apache.axis2.jar file in the tipv2/plugins/ directory,

replace it with the org.apache.axis2-woden.jar in the impact/lib3p/
directory, and rename it org.apache.axis2.jar.

b. If security features such as signature or encryption are required by web
service calls, a signature property file or encryption property file is needed
on impact Java class path. Place property files in the jar that is compiled for
the web service. The following is an example property file that is called
client.properties. You must enter each line of code on a separate line.
org.apache.ws.security.crypto.provider=
org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=apache
org.apache.ws.security.crypto.merlin.file=client.jks

© Copyright IBM Corp. 2006, 2014 55

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

This property file includes information about your keystore file that
contains public and private keys that are used for signature or encryption.
Except the first entry in the file, you must update the next three entries to
reflect information about your own keystore file.

Note: There should be only one client.properties file in the compiled jar.
4. To enable the web services security feature in web services DSA, open the

Policy Editor and add the following module to the policy you develop:
callProps = NewObject();
callProps.EnableWSS = true;
callProps.WSSRepository= "/tmp/impact611/impact/dsa/wsdsa/wss";
callProps.WSSConfigFile = "/tmp/impact611/impact/dsa/wsdsa/wss/conf/wss.xml";

5. The supporting security feature, WSInvokeDL() function is started with an
additional callProps object:
result = WSInvokeDL("Sample07", endpoint, "echo", params, callProps)

6. Start the remaining, secondary Impact Servers.

Results

The preceding steps enable message level security. You can enable HTTP basic
authentication (transport level security) by adding the following module into the
policy you develop:
callProps=NewObject();
callProps.Username="myName";
callProps.Password="myPassword";
WSInvokeDL(....,paramArray, callProps);

Creating a web service policy using web service security
This example shows how to set up a stand-alone Apache Axis2 rampart server
with an Netcool/Impact policy to enable Web Service Security.

Before you begin

For information about the Apache Axis2 Rampart security module, see the
following URL. http://axis.apache.org/axis2/java/rampart/

Tip: If you are using another Web Service Security Server, make sure to use the
client properties and .jks files of the server. Client.properties and client.jks
files are used in Step 2 of the example.
v Java SDK or JRE 1.6 and above is required. You can use Impact SDK if you are

installing the example in the same system where Netcool/Impact is installed:
IMPACT_HOME/sdk/bin

v Ant 1.8 or above is required. You can use the Netcool/Impact Ant package
IMPACT_HOME/ant

v Make sure that the Java and Ant executable files are in the system PATH
environment variable.

About this task

This example uses Apache Axis2 version 1.6.2 and rampart version 1.6.2.
1. Set up Rampart as a stand-alone server.

a. Download Axis2 from the following URL. http://axis.apache.org/axis2/
java/core/download.cgi

56 Netcool/Impact: DSA Reference Guide

http://axis.apache.org/axis2/java/rampart/
http://axis.apache.org/axis2/java/core/download.cgi
http://axis.apache.org/axis2/java/core/download.cgi

b. Download the Rampart from the following URL: http://axis.apache.org/
axis2/java/rampart/download.html

c. Unpack the files that you downloaded in the previous two steps and set the
following environment variables:
v AXIS2_HOME=<where axis2 package downloaded and unpacked>

v RAMPART_HOME=<where rampart package downloaded and unpacked>

d. Copy all the JAR files from RAMPART_HOME\lib to AXIS2_HOME\lib cp –rf
RAMPART_HOME\lib* AXIS2_HOME\lib\.

Remember: The Rampart package is running on the Windows server and
Netcool/Impact is running on the UNIX server. Use the appropriate file
system separator according to your operating system.

e. Copy the following two MAR files to AXIS2_HOME\repository\modules.
v RAMPART_HOME\modules\ rahas-1.6.2.mar

v RAMPART_HOME\modules\rampart-1.6.2.mar.
v Use the following commands.

Copy RAMPART_HOME\modules\ rahas-1.6.2.mar AXIS2_HOME\repository\modules\.

Copy RAMPART_HOME\modules\ rampart -1.6.2.mar AXIS2_HOME\repository\modules\.

f. Go to the RAMPART_HOME\samples\basic directory
cd RAMPART_HOME\samples\basic directory

The directory includes several sample examples marked sample01 to
sample11. This example uses sample04. The Sample04 application echoes only
the message that you typed in the variable.

g. Run the following command to build sample04 application and start the
stand-alone server.
ant clean service.04

The command creates all the necessary files and starts a stand-alone
application for sample04. The port number is displayed in the terminal.
Buildfile: E:\opt\rampart-1.6.2\samples\basic\build.xml

clean:
[delete] Deleting directory E:\opt\rampart-1.6.2\samples\basic\build

check.dependency:

service.04:
[mkdir] Created dir:

E:\opt\rampart-1.6.2\samples\basic\build\service_repositories\sample04
[mkdir] Created dir:

E:\opt\rampart-1.6.2\samples\basic\build\service_repositories\sample04\
services
[mkdir] Created dir:

E:\opt\rampart-1.6.2\samples\basic\build\service_repositories\sample04\
modules
[copy] Copying 2 files to

E:\opt\rampart-1.6.2\samples\basic\build\service_repositories\sample04\modules
[mkdir] Created dir: E:\opt\rampart-1.6.2\samples\basic\build\temp
[mkdir] Created dir: E:\opt\rampart-1.6.2\samples\basic\build\temp\META-INF
[javac] E:\opt\rampart-1.6.2\samples\basic\build.xml:191:
warning: ’includeantruntime’ was not set,

defaulting to build.sysclasspath=last; set to false for repeatable builds
[javac] Compiling 2 source files to E:\opt\rampart-1.6.2\samples\basic\build\temp
[copy] Copying 1 file to E:\opt\rampart-1.6.2\samples\basic\build\temp\META-INF
[copy] Copying 1 file to E:\opt\rampart-1.6.2\samples\basic\build\temp
[copy] Copying 1 file to E:\opt\rampart-1.6.2\samples\basic\build\temp
[jar] Building jar:

E:\opt\rampart-1.6.2\samples\basic\build\service_repositories\
sample04\services\sample04.aar
[delete] Deleting directory E:\opt\rampart-1.6.2\samples\basic\build\temp
[java] [SimpleHTTPServer] Starting
[java] [SimpleHTTPServer] Using the Axis2 Repository

E:\opt\rampart-1.6.2\samples\basic\build\service_repositories\sample04
[java] [SimpleHTTPServer] Listening on port 8080
[java] [INFO] Deploying module: addressing-1.6.2 - file:

/E:/opt/rampart-1.6.2/samples/basic/build/service_repositories/sample04/modules

Chapter 6. Web services security 57

http://axis.apache.org/axis2/java/rampart/download.html
http://axis.apache.org/axis2/java/rampart/download.html

/addressing-1.6.2.mar
[java] [INFO] Deploying module: rampart-1.6.2 - file:

/E:/opt/rampart-1.6.2/samples/basic/build/service_repositories/sample04/modules/ra
mpart-1.6.2.mar

[java] [INFO] Deploying Web service: sample04.aar - file:
/E:/opt/rampart-1.6.2/samples/basic/build/service_repositories/sample04/servic
es/sample04.aar

[java] [INFO] Listening on port 8080
[java] [SimpleHTTPServer] Started

The example shows that the server is running on port 8080 and no warning
or errors occur.

h. Verify the application by going to http://server:8080/axis2/services and
view the following output.
Deployed services
sample04
Available operations
echo

Click the sample04 link to view the WSDL file. The full link to the WSDL
file is http://server:8080/axis2/services/sample04?wsdl.

Now that service is up and running, the next step is to create a policy and
setup Netcool/Impact.

2. Create a Netcool/Impact policy and configure Web Service Security.
a. Create a policy with the policy wizard in the usual way. The WSDL file is

http://server:8080/axis2/services/sample04?wsdl and name of the JAR
file is sample04.

Remember: When the wizard prompts for end point and security, make
sure to enable the security. Select the following option SOAP message user
name authentication so you do not have to enter a user name and
password.

b. The wizard creates the policy with the following parameters:
//Enable web service security
callProps = NewObject();
callProps.EnableWSS = true;
callProps.WSSRepository= "/opt/IBM/tivoli/impact/dsa/wsdsa/wss";
callProps.WSSConfigFile = "/opt/IBM/tivoli/impact/dsa/wsdsa/wss/conf/Sample04_wss.xml";

Tip: The path to the file can vary if you have a different Netcool/Impact
installation location.

c. The xml file /opt/IBM/tivoli/impact/dsa/wsdsa/wss/conf/
Sample04_wss.xml is created as template.
You may need to add a statement to update the InFlowSecurity and
OutFlowSecurity parameters to match the application implementation. See
the application services.xml file in the $RAMPART_HOME/samples/basic/
<sample directory> directory for details.
If you are using a different web service server, you need to update the files
accordingly. A full working xml file for this example is located at the end of
this section see Example of Sample04_wss.xml. Make sure to overwrite the
existing template with the updated file.

d. Update the file /opt/IBM/tivoli/impact/dsa/wsdsa/wss/conf/
wscb.properties to num=1 uid.1=client pwd.1=apache

e. Copy or FTP client.properties and client.jks from RAMPART_HOME\
samples\keys to the IMPACT_HOME\wslib directory.

f. The wizard creates a JAR file in <Impact_HOME>/wslib/sample04.jar. Update
the JAR file with client.properties and client.jks by using the following
command:

58 Netcool/Impact: DSA Reference Guide

<Impact_HOME>/sdk/bin/jar –uf sample04.jar <Impact_HOME>/wslib/ client.*

To verify that the JAR file was updated:
<Impact_HOME>\sdk\bin\jar –tf sample04.jar |grep

to display the content of the JAR file.
g. Move the client.properties and client.jks from the wslib directory
h. Restart Netcool/Impact.
i. Run the policy that you created with the policy wizard.

Results

The following results are displayed.
Parser log: Web Service call echo return result:
<ns:echoResponse xmlns:ns="http://sample04.samples.rampart.apache.org"
xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

<ns:return>Hello from Impact 7 Server</ns:return>
</ns:echoResponse

User name token authentication
Authentication uses a security token to validate the user and determine whether a
client is valid in a particular context. User name tokens are used to validate user
names and passwords.

Procedure

Update the $IMPACT_HOME/impact/dsa/wsdsa/wss/conf/wss.xml parameters in the
following way:
<parameter name="OutflowSecurity"
<action>
<items>UsernameToken Timestamp</items>
,user>bob</user>
<passwordCallbackClass>com.micromuse.common.util.WSPWCBHandler
</passwordCallbackClass>
</action>
<parameter>

In the corresponding wscb.properties file, the parameter values are like:
num=1
uid.1=bob
pwd.1=bobPassword

User name token authentication with a plain text password
Authentication uses a security token to validate the user and determine whether a
client is valid in a particular context. User name tokens are used to validate user
names and passwords.

Procedure

Update the $IMPACT_HOME/impact/dsa/wsdsa/wss/conf/wss.xml parameters:

Remember: If you are using Netcool/Impact bundled with TBSM the path is
$TBSM_HOME/dsa/wsdsa.

Chapter 6. Web services security 59

<parameter name="OutflowSecurity">
<action>
<items>UsernameToken</items>
<user>bob</user>
<passwordCallbackClass>com.micromuse.common.util.WSPWCBHandler
</passwordCallbackClass>
</action>
<parameter>

In the corresponding wscb.properties file, the parameter values are like:
num=1
uid.1=bob
pwd.1=bobPassword

Message integrity and non-repudiation with signature
Procedure

In the $IMPACT_HOME/impact/dsa/wsdsa/wss/conf/wss.xml file, make sure the
OutflowSecurity and InflowSecurity are set in the following way:
<parameter name="OutflowSecurity">
<action>
<items>Timestamp Signature</items>
<user>client</user>
<signaturePropFile>client.properties</signaturePropFile>
<passwordCallbackClass>com.micromuse.common.util.WSPWCBHandler
</passwordCallbackClass>
<signatureKeyIdentifier>DirectReference</signatureKeyIdentifier>

</action>
<parameter>

<parameter name="InflowSecurity">
<action>
<items>Timestamp Signature</items>

<signaturePropFile>client.properties</signaturePropFile>
</action>
<parameter>

The <user>client</user> expression here denotes the outgoing Web services calls,
which will be signed by the private key of user client.
In the corresponding wscb.properties file, the parameter values are like:
num=1
uid.1=client
pwd.1=apache

Encryption
Procedure

In the $IMPACT_HOME/impact/dsa/wsdsa/wss/conf/wss.xml file, make sure the
OutflowSecurity and InflowSecurity are set in the following way:
<parameter name="OutflowSecurity">
<action>
<items>Encrypt</items>
<encryptionUser>service</EncryptionUser>
<encryptionPropFile>client.properties</encryptionPropFile>

</action>
</parameter>

<parameter name="InflowSecurity">
<action>
<items>Encrypt</items>

<passwordCallbackClass>com.micromuse.common.util

60 Netcool/Impact: DSA Reference Guide

.WSPWCBHandler</passwordCallbackClass>
<decryptionPropFile>client.properties</decryptionPropFile>

</action>
</parameter>

The <user>client</user> expression here denotes the outgoing Web services calls,
which will be signed by the private key of user client.
In the corresponding wscb.properties file, the parameter values are like:
num=1
uid.1=service
pwd.1=apache

All outbound Web service calls will be encrypted by the public key entry with
alias service. The keystore file, as described in client.properties file, should
contain the public key entry for alias service. For example, you can get the public
key of service as X.509 certificate and import the certificate into your own
keystore.

Sign and encrypt messages
Procedure

In the $IMPACT_HOME/impact/dsa/wsdsa/wss/conf/wss.xml file, make sure the
OutflowSecurity and InflowSecurity are set in the following way:
<parameter name="OutflowSecurity">

<action>
<items>Timestamp Signature Encrypt</items>
<user>client</user>

<passwordCallbackClass>com.micromuse.common.util.WSPWCBHandler
</passwordCallbackClass>

<signaturePropFile>client.properties</signaturePropFile>
<signatureKeyIdentifier>DirectReference</signatureKeyIdentifier>
<encryptionKeyIdentifier>SKIKeyIdentifier</encryptionKeyIdentifier>
<encryptionUser>service</encryptionUser>

</action>
</parameter>

<parameter name="InflowSecurity">
<action>
<items>Timestamp Signature Encrypt</items>

<passwordCallbackClass>
com.micromuse.common.util.WSPWCBHandler
</passwordCallbackClass>

<signaturePropFile>client.properties</signaturePropFile>
</action>

</parameter>

In the corresponding wscb.properties file, the parameter values are like:
num=2
uid.1=service
pwd.1=apache
uid.2=client
pwd.2=apache

Chapter 6. Web services security 61

62 Netcool/Impact: DSA Reference Guide

Chapter 7. Working with web services and WSDM

[Important: This feature is deprecated.] Web Services Distributed Management
(WSDM) is a web services framework that manages resources and consumers use
to exchange information related to the status of systems, applications, and devices
on a network.

WSDM overview
[Important: This feature is deprecated.] Web Services Distributed Management
(WSDM) facilitates the exchange of systems status, applications, and devices on a
network information.

A manageability resource can provide information about its status by using a web
services interface. For example, a WSDM-enabled computer system might provide
information about its CPU usage, memory usage and disk space. A manageability
consumer is an entity that actively retrieves status information from the resource,
or passively receives notifications from it.

For more information about WSDM, see the WSDM home page at
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm.

WSDM support

Netcool/Impact can act as a consumer of status information from one or more
manageability resources. Netcool/Impact can retrieve status information, update
status information, and actively exchange other kinds of information with a
resource. Netcool/Impact cannot passively receive asynchronous notifications that
originate with another WSDM entity.

Setting Up WSDM support

WSDM support is a built-in feature of the Netcool/Impact web services DSA. You
are not required to complete any setup or configuration steps to use WSDM
features in Netcool/Impact. You do not need to compile a WSDL file and install it
into Netcool/Impact before you use the WSDM support.

WSDM support

You can use the WSDM functions, provided by the Netcool/Impact policy
language (IPL), to retrieve status information, update status information, and
actively exchange other kinds of information with a manageability resource.

Writing WSDM policies
[Important: This feature is deprecated.] The Netcool/Impact policy language (IPL)
provides functions to retrieve property, update property, and exchange other
messages.

Retrieving property values

The IPL provides a function named WSDMGetResourceProperty that you can use to
retrieve property values from a Web Services Distributed Management (WSDM)

© Copyright IBM Corp. 2006, 2014 63

resource. When this function is encountered in a policy, a web services request is
issued to the specified WSDM endpoint and the results of the request is returned
to the policy in the form of an array. You can handle the results of this function in
the same way you handle any other type of array.

Updating property values

The IPL provides a function named WSDMUpdateResourceProperty that you can use
to set property values that are managed by a WSDM resource. When this function
is encountered in a policy, a web services request is issued to the specified
endpoint and the new value or values are included as a message parameter.

Exchanging other messages

The IPL provides a function named WSDMInvoke that you can use to make other
calls to a web services API at the specified endpoint. When this function is
encountered in a policy, a web services request is issued to that endpoint and the
results of the request is returned to the policy in the form of an array. The
structure and returned data for the message is defined by the WSDM resource.

WSDMGetResourceProperty
[Important: This feature is deprecated.] The WSDMGetResourceProperty function
retrieves the value of a management property that is associated with a Web
Services Distributed Management (WSDM) managed resource.

You can use this function to retrieve information about the status of a
WSDM-enabled system, application, or device.

To retrieve the property value, you call WSDMGetResourceProperty and pass the URI
of the WSDM endpoint reference and a flattened XML Qname that specifies which
property to retrieve.

Syntax
Array = WSDMGetResourceProperty(endPointRef, methodName, propQName)

Parameters

The WSDMGetResourceProperty function has the following parameters.

Table 26. WSDMGetResourceProperty function parameters

Parameter Format Description

endPointRef String URI that specifies the endpoint where the WSDM resource
is located.

UserName String Optional: a user name is required by the web service for
SOAP authentication, if any. If no user name is required,
omit this parameter.

Password String Optional: a password is required by the web service for
SOAP authentication, if any. If no password is required,
omit this parameter.

64 Netcool/Impact: DSA Reference Guide

Table 26. WSDMGetResourceProperty function parameters (continued)

Parameter Format Description

propQName String Flattened XML Qname that specifies the management
property to retrieve. The format for the flattened Qname is
namespace:localname [URI], where namespace is the XML
namespace where the property is defined, localname is the
name of the XML element that contains the property and
URI is the endpoint where the WSDM resource is located.
For more information about QNames, see the XML
specifications at http://www.w3.org.

Return Value

The WSDMGetResourceProperty function returns the property value to the policy as
an array. For properties that consist of a single value, the value is stored in the first
array element. For properties that consist of more than one value, the values are
stored in the array in the order that they are retrieved from the WSDM resource. In
most cases, this function returns an array that contains a single property value.

Example

The following example shows how to use WSDMGetResourceProperty to retrieve a
management property named MemoryInUse from the endpoint http://
www.example.com/wsdm-endpoint.
// Specify endpoint URI and flattened QName

MyEndPoint = "http://www.example.com/wsdm-endpoint";
MyQName = "wsrl:MyProperty [http://www.example.com/wsdm-endpoint]";

// Call WSDMGetResourceProperty and pass the endpoint
// and QName and runtime parameters

MyResult = WSDMGetResourceProperty(MyEndPoint, MyQName);

// Print the value of the property to the policy log

Log("Value of MyProperty is " + MyResult[0]);

WSDMUpdateResourceProperty
[Important: This feature is deprecated.] The WSDMUpdatetResourceProperty
function updates the value or values of a management property that is associated
with a Web Services Distributed Management (WSDM) managed resource.

You can use this function to set information about the state of a WSDM-enabled
system, application, or device.

To update the property value, call WSDMUpdateResourceProperty and pass the URI
of the WSDM endpoint reference, a flattened XML Qname that specifies the
property and an array of new property values.

Syntax
WSDMUpdateResourceProperty(endPointRef, propQName, params)

Chapter 7. Working with web services and WSDM 65

Parameters

The WSDMUpdateResourceProperty function has the following parameters.

Table 27. WSDMUpdateResourceProperty function parameters

Parameter Format Description

endPointRef String URI that specifies the endpoint where the WSDM resource
is located.

propQName String Flattened XML Qname that specifies the management
property to update. The format for the flattened Qname is
namespace:localname [URI], where namespace is the XML
namespace where the property is defined, localname is the
name of the XML element that contains the property and
URI is the endpoint where the WSDM resource is located.
For more information about QNames, see the XML
specifications at http://www.w3.org.

ArrayOfValues Array An array that contains the value or values of the property.
For properties that consist of a single value, you must
store the value in the first array element. For properties
that consist of more than one value, you must store the
values in the array in the order that they are managed by
the WSDM resource. In most cases, the property consists
of a single value.

UserName String Optional: a user name is required by the web service for
SOAP authentication, if any. If no user name is required,
omit this parameter.

Password String Optional: a password is required by the web service for
SOAP authentication, if any. If no password is required,
omit this parameter.

Example

The following example shows how to use WSDMUpdateResourceProperty to update a
management property named MemoryInUse from the endpoint http://
www.example.com/wsdm-endpoint.

This example uses IPL.
// Specify endpoint URI, flattened QName and property value

MyEndPoint = "http://www.example.com/wsdm-endpoint";
MyQName = "wsrl:MyProperty [http://www.example.com/wsdm-endpoint]";
Params = {"256"};

// Call WSDMUpdateResourceProperty and pass the endpoint
// and QName and property value

WSDMUpdateResourceProperty(MyEndPoint, MyQName, Params);

This example uses JavaScript.
// Specify endpoint URI, flattened QName and property value

MyEndPoint = "http://www.example.com/wsdm-endpoint";
MyQName = "wsrl:MyProperty [http://www.example.com/wsdm-endpoint]";
Params = ["256"];

// Call WSDMUpdateResourceProperty and pass the endpoint

66 Netcool/Impact: DSA Reference Guide

// and QName and property value

WSDMUpdateResourceProperty(MyEndPoint, MyQName, Params);

WSDMInvoke
[Important: This feature is deprecated.] The WSDMInvoke function sends a web
services message to a Web Services Distributed Management (WSDM) managed
resource.

The structure and content of this message is defined by the receiving WSDM entity.
You can use this function to send messages other than messages that retrieve or
update a management property to a WSDM resource.

To retrieve the property value, you call WSDMInvoke and pass the URI of the WSDM
endpoint reference, the method name, and a Java Qname object that specifies
which property to retrieve.

Syntax
Array = WSDMInvoke(endPointRef, methodName, propQName)

Parameters

The WSDMInvoke function has the following parameters.

Table 28. WSDMInvoke function parameters

Parameter Format Description

endPointRef String URI that specifies the endpoint where the WSDM resource
is located.

Method String Name of the method displayed by the API at the WSDM
resource endpoint.

propQName Object Java Qname object that specifies the management property
to retrieve. You can create an instance of this object in the
policy that uses a call to the NewJavaObject function
provided by the Java DSA.

UserName String Optional: a user name is required by the web service for
SOAP authentication, if any. If no user name is required,
omit this parameter.

Password String Optional: a password is required by the web service for
SOAP authentication, if any. If no password is required,
omit this parameter.

Return Value

The WSDMInvoke function returns any values that were sent in the WSDM reply as
an array. For properties that consist of a single value, the value is stored in the first
array element. For properties that consist of more than one value, the values are
stored in the array in the order that they are retrieved from the WSDM resource. In
most cases, this function returns an array that contains a single property value.

Example

Chapter 7. Working with web services and WSDM 67

The following example shows how to use WSDMInvoke to remotely start a web
services method named GetResourceProperty. This method is displayed by the API
at the specified WSDM endpoint.

This example uses IPL.
// Specify endpoint URI, method name and QName

MyEndPoint = "http://www.example.com/wsdm-endpoint";
MyMethodName = "GetResourceProperty";
MyQNameParams = {"http://docs.oasis-open.org/wsrf/rl-2", "CurrentTime", "wsrl"};
MyQName = NewJavaObject("javax.xml.namespace.QName", qnameParams);

// Call WSDMInvoke and pass the endpoint, the method name
// and the QName object

MyResult = WSDMInvoke(MyEndPoint, MyMethodName, MyQName);

// Print the value of the property to the policy log

Log("Value of MyProperty is " + MyResult[0]);

This example uses JavaScript.
// Specify endpoint URI, method name and QName
MyEndPoint = "http://www.example.com/wsdm-endpoint";
MyMethodName = "GetResourceProperty";
MyQNameParams = ["http://docs.oasis-open.org/wsrf/rl-2", "CurrentTime", "wsrl"];
MyQName = NewJavaObject("javax.xml.namespace.QName", qnameParams);

// Call WSDMInvoke and pass the endpoint, the method name
// and the QName object

MyResult = WSDMInvoke(MyEndPoint, MyMethodName, MyQName);

// Print the value of the property to the policy log

Log("Value of MyProperty is " + MyResult[0]);

68 Netcool/Impact: DSA Reference Guide

Chapter 8. Working with the JMS DSA

You can use the Java Message Service (JMS) data source adapter (DSA) to send and
receive JMS messages from within a policy.

The JMS DSA is installed automatically when you install Netcool/Impact.

For detailed information about connecting WebSphere MQ and JMS DSA, see the
Netcool/Impact Integrations Guide.

Supported JMS providers
Before you can use the Java Message Service (JMS) data source adapter (DSA) to
send and retrieve JMS messages, you must obtain the correct set of JMS client
libraries.

The JMS client libraries are third-party software components that provide the
function that is required to connect to the JMS and JNDI providers in your
environment. These libraries are Java JAR files that are distributed with each JMS
application. The JMS DSA is compatible with JMS providers that fully support the
JMS 1.1 specification.

For more information about JMS 1.1, see the Sun Microsystems Java website at
http://java.sun.com/products/jms. Some supported JMS providers include
OpenJMS 0.7.7; BEA WebLogic 8.1; Sun Java System Application Server 8 and later;
and WebSphere MQ. For information about connecting WebSphere MQ to a JMS
DSA, see the Integrations Guide.

Configuring JMS DSAs to send and receive JMS messages
You must complete the configuration steps before you can use the Java Message
Service (JMS) data source adapter (DSA) to send and retrieve JMS messages.

Procedure
1. Obtain and install the required JMS client libraries.
2. Copy the client JAR files from the JMS client installation directory to the

$IMPACT_HOME/dsalib directory.
3. Restart the embedded version of WebSphere Application Server.
4. Create a JMS data source, and configure it for the JMS source.

For more information about creating a JMS data source, see “JMS data source”
on page 70.

5. Handle the incoming JMS messages.
You can handle the incoming JMS messages by using any of these approaches:
v Write JMS policies that use the JMS data source, and the JMS functions.

For more information, see “Writing JMS DSA policies” on page 73.
v Configure the JMSListener service to send JMS events to a policy.

If you use the JMSListener to send JMS messages to your policy, you do not
have to use the ReceiveJMSMessage function to receive them. For more
information, see “Handling incoming messages from a JMS message listener”
on page 79.

© Copyright IBM Corp. 2006, 2014 69

http://java.sun.com/products/jms

Setting up OpenJMS as the JMS provider
You can set up OpenJMS as the Java Message Service (JMS) provider for
Netcool/Impact.

Procedure
1. Obtain the OpenJMS libraries from the OpenJMS website (http://

openjms.sourceforge.net/.
2. To install OpenJMS, follow the procedure in the getting started information that

is available on the OpenJMS website (http://openjms.sourceforge.net/).
3. Copy the OpenJMS client JAR files to the $IMPACT_HOME/dsalib directory.

You can find the OpenJMS client JAR files in the lib subdirectory in the
OpenJMS installation directory.

4. To restart the embedded version of WebSphere Application Server, use the
ewasImpactStartStop script that is in the $IMPACT_HOME/bin directory.

5. To start the OpenJMS server, use the startup script that is in the bin
subdirectory in the OpenJMS installation directory.

6. Create a JMS data source, and configure it for OpenJMS.
For more information, see “JMS data source”

JMS data source
A Java Message Service (JMS) data source abstracts the information that is required
to connect to a JMS Implementation.

This data source is used by the JMSMessageListener service, the SendJMSMessage,
and ReceiveJMSMessage functions.

JMS data source configuration properties
You can configure the properties for the Java Message Service (JMS) data source.

Table 29. General settings for the JMS data source window

Window element Description

Data Source Name Enter a unique name to identify the data
source. You can use only letters, numbers,
and the underscore character in the data
source name. If you use UTF-8 characters,
make sure that the locale on the Impact
Server where the data source is saved is set
to the UTF-8 character encoding.

70 Netcool/Impact: DSA Reference Guide

http://openjms.sourceforge.net/
http://openjms.sourceforge.net/
http://openjms.sourceforge.net/

Table 30. Source settings for the JMS data source window

Window element Description

JNDI Factory Initial Enter the name of the JNDI initial context factory. The JNDI
initial context factory is a Java object that is managed by
the JNDI provider in your environment. The JNDI provider
is the component that manages the connections and
destinations for JMS.

OpenJMS, BEA WebLogic, and Sun Java Application Server
distribute a JNDI provider as part of their JMS
implementations. The required value for this field varies by
JMS implementation. For OpenJMS, the value of this
property is org.exolab.jms.jndi.InitialContextFactory.
For other JMS implementations, see the related product
documentation.

JNDI Provider URL Enter the JNDI provider URL. The JNDI provider URL is
the network location of the JNDI provider. The required
value for this field varies by JMS implementation. For
OpenJMS, the default value of this property is
tcp://hostname:3035, where host name is the name of the
system on which OpenJMS is running. The network
protocol (TCP or, RMI,) must be specified in the URL
string. For other JMS implementations, see the related
product documentation.

JNDI URL Packages Enter the Java package prefix for the JNDI context factory
class. For OpenJMS, BEA WebLogic, and Sun Java
Application Server, you are not required to enter a value in
this field.

JMS Connection Factory
Name

Enter the name of the JMS connection factory object. The
JMS connection factory object is a Java object that is
responsible for creating new connections to the messaging
system. The connection factory is a managed object that is
administered by the JMS provider. For example, if the
provider is BEA WebLogic, the connection factory object is
defined, instantiated, and controlled by that application.
For the name of the connection factory object for your JMS
implementation, see the related product documentation.

JMS Destination Name Enter the name of a JMS topic or queue, which is the name
of the remote topic or queue where the JMS message
listener listens for new messages.

JMS Connection User Name Enter a JMS user name. If the JMS provider requires a user
name to listen to remote destinations for messages, enter
the user name in this field. JMS user accounts are
controlled by the JMS provider.

JMS Connection Password If the JMS provider requires a password to listen to remote
destinations for messages, enter the password in this field.

Test Connection Test the connection to the JMS Implementation. If the test is
successful, the system shows the following message:

JMS: Connection OK

Specifying more JNDI properties for the JMS data source
You can specify more Java Naming and Directory Interface (JNDI) properties by
editing the Java Message Service (JMS) data source.

Chapter 8. Working with the JMS DSA 71

Procedure
1. Open the JMS data source for editing in a text editor of your choice. You can

find all data sources in the $IMPACT_HOME/etc/ directory. The data source file
name is <servername>_<datasourceName>.ds. <servername> is the name of the
Impact Server instance, and <datasourceName> is the name of your JMS data
source as displayed in the data source editor in GUI.

2. Add your JNDI properties in the following format:
<datasourceName>.JMS.DSPROPERTY.#.NAME=<property>
<datasourceName>.JMS.DSPROPERTY.#.VALUE=<property value>

is the property number in a sequence of properties, the starting number is 1,
for example:
<datasourceName>.JMS.DSPROPERTY.1.NAME=java.naming.factory.initial
<datasourceName>.JMS.DSPROPERTY.1.VALUE=org.exolab.jms.jndi.

InitialContextFactory
<datasourceName>.JMS.DSPROPERTY.2.NAME=java.naming.provider.url
<datasourceName>.JMS.DSPROPERTY.2.VALUE=tcp://jndi_host:3035
<datasourceName>.JMS.DSPROPERTY.3.NAME=java.naming.security.principal
<datasourceName>.JMS.DSPROPERTY.3.VALUE=User1
<datasourceName>.JMS.DSPROPERTY.4.NAME=java.naming.security.credentials
<datasourceName>.JMS.DSPROPERTY.4.VALUE=password
<datasourceName>.JMS.NUMDSPROPERTIES=4

The <datasourceName>.JMS.NUMDSPROPERTIES=<number of properties> property
specifies the number of more properties, 4 in the previous example.

Note: Use the $IMPACT_HOME/bin/nci_crypt utility to encrypt the value of the
java.naming.security.credentials property.

3. Save the changes in the data source, and restart the Impact Server to apply the
changes.

JMS message listener
The Java Message Service (JMS) message listener service runs a policy in response
to incoming messages that are sent by external JMS message providers.

The message provider can be any other system or application that can send JMS
messages. Each JMS message listener listens to a single JMS topic or queue. There
is one default JMS message listener named JMSMessageListener. You can create as
many listener services as you need, each of which listens to a different topic or
queue.

A JMS message listener is only required when you want Netcool/Impact to listen
passively for incoming messages that originate with JMS message producers in
your environment. You can actively send and retrieve messages from within a
policy without using a JMS message listener.

JMS message listener service configuration properties
You can configure the properties for the Java Message Service (JMS) listener
service.

Table 31. JMSMessageListener Service configuration window

Window element Description

Service name Enter a unique name to identify the service.

Policy To Execute Select the policy that you created to run in response to
incoming messages from the JMS service.

72 Netcool/Impact: DSA Reference Guide

Table 31. JMSMessageListener Service configuration window (continued)

Window element Description

JMS Data Source JMS data source to use with the service.

You need an existing and valid JMS data source for the
JMS Message Listener service to establish a connection
with the JMS implementation and to receive messages.
For more information about creating JMS data sources,
see “JMS data source configuration properties” on page
70.

Message Selector The message selector is a filter string that defines which
messages cause Netcool/Impact to run the policy
specified in the service configuration. You must use the
JMS message selector syntax to specify this string.
Message selector strings are similar in syntax to the
contents of an SQL WHERE clause, where message
properties replace the field names that you might use in
an SQL statement.

The content of the message selector depends on the types
and content of messages that you anticipate receiving
with the JMS message listener. For more information
about message selectors, see the JMS specification or the
documentation distributed with your JMS
implementation. The message selector is an optional
property.

Durable Subscription: Enable You can configure the JMS message listener service to use
durable subscriptions for topics that allow the service to
receive messages when it does not have an active
connection to the JMS implementation. A durable
subscription can have only one active subscriber at a
time. Only a JMS topic can have durable subscriptions.

Client ID Client ID for durable subscription. It defines the client
identifier value for the connection. It must be unique in
the JMS Implementation.

Subscription Name Subscription Name for durable subscription. Uniquely
identifies the subscription made from the JMS message
listener to the JMS Implementation. If this property is not
set, the name of JMS DSA listener service itself is used as
its durable subscription name, which is
JMSMessageListener by default.

Clear Queue: Clear Clear the message waiting in the JMSMessageListener
queue that has not yet been picked by the EventProcessor
service. It is recommended not to do this while the
Service is running.

Service: Automatically when
server starts

Select to automatically start the service when the server
starts. You can also start and stop the service from the
GUI.

Service log: Write to file Select to write log information to a file.

Writing JMS DSA policies
Java Message Service (JMS) policies send or retrieve JMS messages.

Chapter 8. Working with the JMS DSA 73

JMS policies use the SendJMSMessage and ReceiveJMSMessage functions, or work
with the JMS message listener service.

In a policy, you use the JMS DSA to perform the following tasks:
v Send messages to a JMS topic or queue
v Retrieve messages from a JMS topic
v Queue or handle incoming messages from a JMS message listener

Sending messages to a JMS topic or queue
You can send messages to a Java Message Service (JMS) topic or queue from
within a policy.

Procedure
1. Create and configure a JMS data source

For more information, see “JMS data source” on page 70.
2. Create a message properties context.

For more information, see “Message properties context” on page 75.
3. Create a message body string or context.

For more information, see “Creating a message body string or context” on page
76.

4. Call the SendJMSMessage function and pass the values the JMS data source, the
message properties context, and the specified message body as runtime
parameters.
For more information about the syntax of the SendJMSMessage function, see
“SendJMSMessage.”

SendJMSMessage
The SendJMSMessage function sends a message to the specified destination by
using the Java Message Service (JMS) DSA.

To send the message, you call the SendJMSMessage function and pass the
JMSDataSource, a message properties context, and the message body as runtime
parameters.

Syntax

The SendJMSMessage function has the following syntax:
SendJMSMessage(DataSource, MethodCallProperties, Message)

Parameters

The SendJMSMessage function has the following parameters.

Table 32. SendJMSMessage function parameters

Parameter Format Description

DataSource String Valid, and existing JMS data source.

MethodCallProperties Context Context that contains message header, and
other JMS properties for the message.
Custom message properties are supported.

Message String | Context String or context that contains the body of
the message.

74 Netcool/Impact: DSA Reference Guide

Message properties context
The message properties context specifies runtime parameters for the underlying
Java Message Service (JMS) client method call that retrieves the message when you
call the ReceiveJMSMessage function.

You pass this context as a runtime parameter when you call the SendJMSMessage
function in a policy. This message properties context specifies the message header,
custom message properties, and the message selector. The table shows the valid
JMS message header values.

Table 33. JMS Message Header Values

Property Description

DeliveryMode Optional. Specifies the JMS delivery mode for the
method. Possible values are 1 for non-persistent and 2 for
persistent.

DisableMessageId Optional. Specifies whether JMS message IDs are
disabled.

DisableMessageTimeStamp Optional. Specifies whether JMS message time stamps are
disabled.

JMSCorrelationID Optional. Specifies a JMS correlation ID for the message.

JMSCorrelationIDAsBytes Optional. Specifies a JMS correlation ID for the message
as an array of bytes.

JMSDeliveryMode Optional. Specifies a JMS delivery mode. Possible values
are 0 for persistent mode and 1 for non-persistent mode.

JMSDestination Optional. Specifies a destination for the message in the
form of a JMS-administered object.

JMSExpiration Optional. Specifies an expiration value in milliseconds for
the message. If not specified, value is set by the JMS
provider.

JMSMessageID Optional. Specifies a JMS message ID for the message.

JMSPriority Optional. Specifies a JMS priority level for the message.
JMS supports priority levels from 0 to 9, with 9 as the
highest.

JMSRedelivered Optional. Specifies whether the message is being
redelivered. Possible values are True or False.

JMSReplyTo Optional. Specifies the name of a JMS destination where
replies to this message are sent.

JMSTimeStamp Optional. Specifies a time stamp for the message in
seconds since the beginning of the UNIX epoch. If not
specified, the value is set by the JMS provider.

JMSType Optional. Specifies a JMS message type for the message.
Some JMS implementations use a message repository to
store defined types of messages. You can use this header
value to associate a particular message with a message
type.

Priority Same as JMSPriority.

TimeToLive Optional. Specifies the length of time that a message is
retained by the JMS delivery system before it expires. The
default value is 0, which indicates an unlimited message
lifetime.

Chapter 8. Working with the JMS DSA 75

For more information about the JMS message header, see the documentation that
was provided with your JMS application.

Optionally, you can also specify custom message properties. These properties are
user-defined and can contain any value. Generally, these properties are used to
send meta information about messages that is not otherwise described in the
message header.

The following example shows how to create and populate a message properties
context:
// Call NewObject to create the new context
MsgProps = NewObject();

// Assign message header values as member variables
MsgProps.TimeToLive = 0;
MsgProps.Priority = 5;
MsgProps.DeliveryMode = "PERSISTENT";
MsgProps.ReplyTo = "jms/Topic";

// Assign custom message properties as member variables
MsgProps.Custom1 = "First custom property";
MsgProps.Custom2 = "Second custom property";

Creating a message body string or context
You specify the message body by using a string value or a context, depending on
whether you want to send a text message or a map message.

To specify the body of a text message, you use a string assignment statement in the
policy. When you call SendJMSMessage, you pass this string to the function as a
runtime parameter. This example shows how to assign the body of a text message
to a string:
MsgTextBody = "Body content of text message";

To specify the body of a map message, you create a context by using the
NewObject function. You assign one member variable for each name-value pair in
the map, where the name of the variable corresponds to the name for the pair.
When you call SendJMSMessage, you pass this context to the function as a runtime
parameter.

This example shows how to create a message body context for a map message. In
this example, the names of values in the map are name, location, and email.
MsgMapBody = NewObject();

MsgMapBody.name = "John Smith";
MsgMapBody.location = "New York City";
MsgMapBody.email = "jsmith@example.com";

Example of sending a map message to a JMS destination
The following example shows how to send a map message to a Java Message
Service (JMS) destination by using the SendJMSMessage function.
// Set JMSDataSource to a valid and existing JMSDataSource in Impact.
// The destination where the message is sent is obtained from the JMSDataSource.
JMSDataSource = “JMSDS1”;

// Create a message properties object and populate its
// member variables with message header properties and custom properties
MsgProps = NewObject();
MsgProps.TimeToLive = 0;
MsgProps.color = "green";

76 Netcool/Impact: DSA Reference Guide

MsgProps.Expiration = 2000;
MsgProps.DeliveryMode = "PERSISTENT";
MsgProps.ReplyTo="queue2";

// Specify custom message properties
MsgProps.Custom1 = "Value 1";
MsgProps.Custom2 = "Value 2";

// Create a map message content and populate its member
// variables where each variable and value represent a name/
// value pair for the resulting map
MsgMapBody = NewObject();
MsgMapBody.name = "sanjay";
MsgMapBody.location = "New York City";
MsgMapBody.facility = "Wall St.";

// Call SendJMSMessage and pass the JNDI properties
// context, the message properties context, the message
// map context and other parameters
SendJMSMessage(JMSDataSource, MsgProps, MsgMapBody);

Example of sending a text message to a JMS destination
This example shows how to send a text message to a Java Message Service (JMS)
destination by using the SendJMSMessage function.
// Set JMSDataSource to a valid and existing JMSDataSource in Impact.
// The destination where the message is sent is obtained from the JMSDataSource.
JMSDataSource = “JMSDS1”;

// Create a message properties object and populate its
// member variables with message header properties and custom properties
MsgProps = NewObject();
MsgProps.TimeToLive = 0;
MsgProps.color = "green";
MsgProps.Expiration = 2000;
MsgProps.DeliveryMode = "PERSISTENT";
MsgProps.ReplyTo="queue2";

// Specify custom message properties
MsgProps.Custom1 = "Value 1";
MsgProps.Custom2 = "Value 2";

// Create a text message content
MsgTextBody = "This is the message body";

// Call SendJMSMessage and pass the JNDI properties
// context, the message properties context, the message
// map context and other parameters
SendJMSMessage(JMSDataSource, MsgProps, MsgTextBody);

Retrieving JMS messages from a topic or queue
You can retrieve messages from a Java Message Service (JMS) topic or queue from
within a policy.

Procedure
1. Create and configure a JMS data source

For more information, see “JMS data source” on page 70.
2. Create a message properties context.

For more information, see “Creating a message properties context” on page 78.
3. Call the ReceiveJMSMessage function and pass the values of the JMS data

source, and the message properties context as parameters.

Chapter 8. Working with the JMS DSA 77

For examples of the ReceiveJMSMessage function usage, see
“ReceiveJMSMessage.”

4. Handle the retrieved message
For more information, see “Handling a retrieved message” on page 79.

ReceiveJMSMessage
The ReceiveJMSMessage function retrieves a message from the specified Java
Message Service (JMS) destination.

To retrieve the message, you call this function and pass a JMSDataSource, and a
message properties context as runtime parameters.

Syntax

The ReceiveJMSMessage function has the following syntax:
ReceiveJMSMessage(DataSource, MethodCallProperties)

Parameters

The ReceiveJMSMessage function has the following parameters:

Table 34. ReceiveJMSMessage function parameters

Parameter Format Description

DataSource String Existing, and valid JMS data source.

MethodCallProperties Context Context that contains optional MessageSelector
and Timeout.

Creating a message properties context
The message properties context specifies connection information for the underlying
Java Message Service (JMS) client method call that retrieves the message when you
call the ReceiveJMSMessage function.

You pass this context as a parameter when you call the ReceiveJMSMessage
function in a policy. The following table shows the properties that you can set in
the message properties context:

Table 35. Message Properties Context

Property Description

MessageSelector String expression that specifies which message in the topic
or queue you want to retrieve. The message selector syntax
is similar to the contents of an SQL WHERE clause and is
defined in the JMS specification.

Timeout Specifies the length of time that a message is retained by
the JMS delivery system before it expires. Default value is
0, which indicates an unlimited message lifetime.

You can create an empty message properties context by passing the NewObject
function to the ReceiveJMSMessage as a parameter.

The following example shows how to create a message properties context.
// Call NewObject to create the next context
MsgProps = NewObject();

78 Netcool/Impact: DSA Reference Guide

// Assign a message selector that filters the message to
// retrieve

MsgProps.MessageSelector = "color = ’green’ AND custom2 = ’1234543’";

Handling a retrieved message
The ReceiveJMSMessage function uses three variables to store message information
that is retrieved from a Java Message Service (JMS) topic or queue.

Table 1 shows the built-in variables that store the message information:

Table 36. Built-in Message Variables

Variable Description

JMSMessage JMS message body. If the message is a text message, the
value of this variable is a string. If the message is a map
message, the value of this variable is a context where each
member variable in the context corresponds to a
name-value pair in the message map.

MessageType If the message is a text message, the value of this variable
is a string "Text". If the message is a map message, the
value of this variable is a string "Map".

JMSProperties Custom JMS message properties that are attached to the
message.

This example shows how to handle a retrieved message:
// Call ReceiveJMSMessage and pass the JNDI properties,
// message properties and other information as runtime parameters
ReceiveJMSMessage(JMSDataSource, MsgProps);

// Print the contents of the message to the policy log
Log("Message type: " + MessageType);
Log("Message properties: " + JMSProperties.Custom1);
Log("Message properties: " + JMSProperties.Custom2);

If (MessageType == "Text") {
Log("Message body: " + JMSMessage);

} Else {
Log("Message map value 1: " + JMSMessage.MyValue1);
Log("Message map value 2: " + JMSMessage.MyValue2);

}

Handling incoming messages from a JMS message listener
When a Java Message Service (JMS) message listener receives a message from a
JMS destination, it compares the contents of the message to message selectors
specified in its configuration.

If the message matches the message selector, or if no selector is specified, the JMS
message listener puts the message in its queue. The EventProcessor service picks
up the message, and sends it to the policy as an EventContainer.

The JMS message listener uses the message variables that are used when you use
the ReceiveJMSMessage function - JMSMessage, MessageType, and JMSProperties -
to retrieve a policy. For more information about these variables, see “Handling a
retrieved message.” When you handle these variables as set by a JMS message
listener, you must reference them by using the @ notation in an IPL policy, or the
dot notation in a JavaScript policy, for example, EventContainer.MessageType.

Chapter 8. Working with the JMS DSA 79

This example shows how to handle an incoming message from a JMS message
listener by using the @ notation.
// Print the contents of the message to the policy log
Log("Message type: " + @MessageType);
Log("Message properties: " + @JMSProperties.Custom1);
Log("Message properties: " + @JMSProperties.Custom2);

If (MessageType == "Text") {
Log("Message body: " + @JMSMessage);

} Else {
Log("Message map value 1: " + @JMSMessage.MyValue1);
Log("Message map value 2: " + @JMSMessage.MyValue2);

}

Example of receiving a map message
This example shows how to use the ReceiveJMSMessage function to receive a map
message.

The example uses the map message that was used in “Example of sending a map
message to a JMS destination” on page 76.
/// Use a existing and valid JMSDataSource
JMSDataSource = “JMSDS1”;

// Create a message properties object and populate its
// member variables with optional parameters like MessageSelector and Timeout
MsgProps = NewObject();
// MessageSelector is used for filtering incoming messages so that messages
// with properties matching the MessageSelector expression are delivered.
MsgProps.MessageSelector = "color = ’green’ AND Custom2 = ’Value 2’";

// Timeout must be specified in milliseconds. This parameter specifies how long the
// MessageConsumer blocks to receive a Message. A Timeout of zero makes the
// MessageConsumer wait indefinitely to receive a message.
MsgProps.Timeout = 6000;

// Call ReceiveJMSMessage and pass the JMSDataSource and message properties
ReceiveJMSMessage(JMSDataSource, MsgProps);

// Print the contents of the message to the policy log
Log("Message type: " +MessageType);
Log("Message prop.Custom1: " + JMSProperties.Custom1);
Log("Message prop.Custom2: " + JMSProperties.Custom2);
If (MessageType == "Text") {

Log("Message body: " + JMSMessage);
} Else {

Log("Message map.name: " + JMSMessage.name);
Log("Message map.location: " + JMSMessage.location);

}

The If (MessageType == "Text") statement also checks whether the message is a
text message, and prints the message to the log, if it is.

80 Netcool/Impact: DSA Reference Guide

Chapter 9. Working with the XML DSA

The XML DSA is a data source adaptor that is used to read and to extract data
from any well-formed XML document.

XML DSA overview
The XML DSA is used to read and extract data from any XML document.

The XML DSA can read XML data from files, strings, and HTTP servers by way of
the network (XML over HTTP). The Xerces DOMParser 2.6 parser is used for the
XML DSA.

The XML DSA is installed with Netcool/Impact so you do not need to complete
any additional installation or configuration steps.

Before you can use the XML DSA, you must complete the following tasks:
v Create a set of XML data types that corresponds to the structure of the XML

document you want to read with Netcool/Impact. For more information about
creating XML data types, see “Creating XML data types” on page 83.

v Set up XML data type mappings that show the relationship between an XML
data source, an XML document, and XML data types.

v Write one or more XML DSA policies that read XML data from a file, a string or
from an HTTP server over a network.

XML documents
The DSA considers an XML document to be any well-formed set of XML data that
descends from a single root element.

This document can be in a string, a text file, or on an HTTP server.

XML DTD and XSD files
XML DTD and XSD files contain a document type description.

You must provide an XML DTD or XSD file for each type of XML document that
you want the DSA to read.

XML data types
XML data types are Netcool/Impact data types that represent XML documents and
their contents.

The DSA uses the following XML data types:

Super data types
Super data types represent types of XML documents. The DSA uses one
data type for each type of document that it reads.

Element data types
Element data types represent the elements in an XML document. The DSA
requires one such data type for each type of XML element.

© Copyright IBM Corp. 2006, 2014 81

Super data types
Super data types represent types of XML documents. The DSA uses one data type
for each type of document that it reads.

A super data type contains a single data item, called the document data item. This
data item represents the instance of the document that the DSA uses. The display
name of the document data item is the same as the name of the super data type.
The document data item contains a static link to the element data item that
represents the root level element of the document.

Element data types
Element data types represent the elements in an XML document. The DSA requires
one such data type for each type of XML element.

An element data type contains one field for each attribute in the corresponding
XML element. In addition, the data type contains a field that corresponds to the
PCDATA value of the element, if any.

Element data types contain one or more data items, called element data items.
Each such data item represents an instance of the element in the document.

The hierarchical relationship between XML elements is represented at the data item
level by static links. Element data items are statically linked in such a way that
each data item contains links to other data items. The other data items represent
the child elements of the corresponding element in the XML document.

Element namespaces are a convention that is used by the DSA to show that a set of
element data types is related to a single XML document. The DSA uses element
namespaces to avoid ambiguity in cases where more than one type of XML
document that is used by the DSA has an element of the same name.

XML configuration files
XML configuration files are text files that store mapping information for XML data
types.

The DSA reads the configuration files at startup and uses the information during
run time to locate the DTD or XSD file and data source for each XML document.
For more information about XML configuration files, see “Data type mappings” on
page 85.

XML document and data type mapping
The XML DSA provides mapping between an XML document and a set of data
types.

The DSA uses the information in an XML DTD or XSD file to understand the
structure of the XML data and to map the data to the corresponding data types.

One aspect of the structure of the XML data is the hierarchical relationship
between XML elements. The DSA uses static links to map this relationship to the
XML data types. Each element data item is linked to its logical child data item by a
static link. When you read the XML data in a policy, you use the GetByLinks
function to traverse the resulting structure. You can also use the embedded linking
syntax to traverse the structure.

82 Netcool/Impact: DSA Reference Guide

This example shows a partial XML document, and the linking relationship between
the corresponding element data items.
<XML_alert id="0123456789">

<XML_head>
<XML_sender>IBM</XML_sender>
<XML_subject>Alert</XML_subject>

</XML_head>
<XML_body>

<XML_node>NodeXYZ</XML_node>
<XML_summary>Node not responding</XML_summary>

</XML_body>
</XML_alert>

This figure shows the linking relationship between the corresponding element data
items:

Creating XML data types
You must create XML data types to represent the structure of the XML document
that you want to read with Netcool/Impact.

To create the XML data types, you run either the create DTD types script or the
create XSD types script, depending on which type of schema you are using. The
create types script creates a super data type and then reads the XML DTD or XSD
file. The create types script creates one element data type for each type of element
that is defined in the file, including the root level element. The script uses the
names of the elements in the DTD or XSD file as the names of the element data
types. If you specify an element namespace, add a prefix to the name of each
element data type. The script then uses the command-line service to insert data
types into Netcool/Impact. For more information, see “Create data types scripts”
on page 84.

You can also use the XML DSA wizard to automate creating XML data types. For
more information about XML DSA wizards, see Policy wizards in the User Interface
Guide.

Figure 1. Linking relationships between corresponding element data items

Chapter 9. Working with the XML DSA 83

Important: If you create an XML data type in a server cluster, either by using the
wizard or the script, cluster members are updated with the new .type files. The
following configuration files are not updated:
v XmlHttpTypes

v XmlFileTypes

The $IMPACT_HOME/dsa/XmlDsa will be replicated during startup of the secondary
cluster members from the primary server. If you are using XML DSA wizard, or
using the scripts provide, the changes will replicate in real time.

Create data types scripts
The XML DSA provides two scripts that you can run from the command line to
create XML data types.

You can find these scripts in the $IMPACT_HOME/dsa/XmlDsa/bin directory. You use
the CreateDtdTypes script to create data types from an XML DTD. The script has
the following syntax:
CreateDtdTypes server_name user password dtdFile type_name namespace_prefix

You use the CreateXsdTypes script to create data types from an XML XSD. The
script has the following syntax:
CreateXsdTypes server_name user password xsdFile type_name namespace_prefix

Table 37 explains the options that are used with the scripts.

Table 37. Create data type scripts options

Option Description

server_name The name of the Impact Server.

user The name of the Impact Server user.

password The Impact Server user's password.

dtdFile The path and file name of the XML DTD file that describes the
XML document. Relative to the $IMPACT_HOME/dsa/XmlDsa/bin
directory.

xsdFile The path and file name of the XML XSD file that describes the
XML document. Relative to the $IMPACT_HOME/dsa/XmlDsa/bin
directory.

type_name The name of the resulting super data type.

namespace_prefix The optional prefix added to the names of element data types. This
string is not prefixed to the name of the super data type.

The CreateDtdTypes and CreateXsdTypes scripts replace any colon character in XML
element names with an underscore when you create the data types. For example, if
a DTD file contains an element named netcool:alert, the create DTD types script
creates a corresponding element data type named netcool_alert.

Important: The Impact Server must be up for these scripts to run successfully.

Here is an example of the CreateDtdTypes script usage on UNIX:
./CreateDtdTypes.sh NCI tipadmin netcool ../TOC.dtd XmlStringTOC STEST_

84 Netcool/Impact: DSA Reference Guide

Data type mappings
After you create the XML data types, you must set up data type mappings.

A data type mapping is a set of information that shows the relationship between
an XML data source, an XML document, and XML data types. The DSA uses this
information to map the contents of an XML document to the data types in
Netcool/Impact. You must set up one data type mapping for each type of XML
document you want Netcool/Impact to read.

Data type mapping information is stored in XML configuration files. The DSA uses
the following XML configuration files:
v XmlFileTypes

v XmlHttpTypes

These files are in the $IMPACT_HOME/dsa/XmlDsa directory.

Note: After you edit the data types, you must restart the Impact Server.

Setting up mappings for XML files and strings
For each XML string or file that you want the DSA to read, you must add the
mapping information to the XmlFileTypes file.

Add the following mapping information:
v Name of the super data type
v Path and file name of the corresponding XML DTD/XSD file
v Path and file name of the corresponding XML file (XML files only)
v Namespace prefix that is used for the element data types (optional)

You use the following format to specify mapping information:
XmlDsa.fileTypes.n.property=value

where n is a numeric value that identifies the mapping, property is the name of the
mapping property, and value is the value.

Table 1 shows the mapping properties in the XmlFileTypes file.

Table 38. XmlFileTypes mapping properties

Property Description

typeName Specifies the name of the corresponding super data type.

dtdFile Specifies the path and file name of a corresponding XML DTD or XSD
file. The path can be an absolute path or a path relative to the
$IMPACT_HOME directory.

isXsd Boolean variable that specifies whether the schema is defined in XSD or
DTD format. If it is not specified, the default is DTD format. If it is not
specified, the default is DTD format.

xmlFile Specifies the path and file name of the corresponding file for XML files.
The path is relative to the $IMPACT_HOME directory. For XML strings, use
the hyphen character as a placeholder.

prefix Specifies the namespace prefix that is used to identify the
corresponding element data types. This property is optional.

Chapter 9. Working with the XML DSA 85

This example shows a set of mapping properties for an XML document that is
contained in a file.
XmlDsa.fileTypes.1.typeName XML_file_superType
XmlDsa.fileTypes.1.dtdFile dsa/XmlDsa/file.dtd
XmlDsa.fileTypes.1.xmlFile dsa/XmlDsa/file.xml
XmlDsa.fileTypes.1.prefix XML_

This example shows a set of mapping properties for an XML document that is
contained in a string.
XmlDsa.fileTypes.2.typeName XML_string_superType
XmlDsa.fileTypes.2.dtdFile dsa/XmlDsa/string.dtd
XmlDsa.fileTypes.2.xmlFile -
XmlDsa.fileTypes.2.prefix XML_

Note: this example uses the hyphen character (-) for the xmlFile property.

The following example shows an expression that uses the XmlFileTOC data type
with isXsd set to true. The name space prefix is FTEST. This prefix must be added
to all data types that are a part of the XML file.
XmlDsa.fileTypes.1.typeName XmlFileTOC
XmlDsa.fileTypes.1.dtdFile dsa/XmlDsa/TOC.xsd
XmlDsa.fileTypes.1.xmlFile dsa/XmlDsa/TOC.xml
XmlDsa.fileTypes.1.prefix FTEST_
XmlDsa.fileTypes.1.isXsd true

Setting up mappings for XML over HTTP
For each XML document that you want the DSA to read over HTTP, you must add
the mapping information to the XmlHttpTypes file.

Add the following mapping information:
v Name of the super data type.
v Base URL for the HTTP server.
v User name, password, and authentication realm (optional). This information is

only required if the XML document is in a password-protected area of the HTTP
server.

v Namespace prefix that is used for the element data types (optional).

You use the following format to specify mapping:
XmlDsa.httpTypes.n.property=value

where n is a numeric value that identifies the mapping, property is the name of
the mapping property, and value is the value.

Table 1 shows the mapping properties in the XmlHttpTypes file.

Table 39. XmlHttpTypes mapping properties

Property Description

typeName Name of the corresponding super data type.

dtdFile Path and file name of the corresponding XML DTD file. Can be an
absolute path, or relative to the $IMPACT_HOME directory.

xsdFile Path and file name of a corresponding XML XSD file. Can be an
absolute path, or relative to the $IMPACT_HOME directory. Used only
if the XML schema is an XSD.

86 Netcool/Impact: DSA Reference Guide

Table 39. XmlHttpTypes mapping properties (continued)

Property Description

isXsd This Boolean variable specifies whether the schema is defined in
XSD or DTD format. Default is DTD, if not specified.

url Base URL for the HTTP server. The base URL includes the server
host name, and the path where the script or executable file that
provides the XML data is located. You do not need to specify the
trailing backslash in the base URL. This URL is combined with the
contents of the FilePath parameter to form the complete URL
when you retrieve the XML data in a policy.

user User name valid under HTTP server authentication (optional).

password Password valid under HTTP server authentication (optional).

realm Authentication realm on the HTTP server (optional).

prefix Namespace prefix that is used to identify the corresponding
element data types (optional).

connectionsPerHost Number of connections per host. The default is 2. (Optional)

This example shows a set of mapping properties for XML data that is provided by
an HTTP server.
XmlDsa.httpTypes.1.typeName XML_http_superType
XmlDsa.httpTypes.1.dtdFile dsa/XmlDsa/http.dtd
XmlDsa.httpTypes.1.url http://localhost:9080/cgi-bin
XmlDsa.httpTypes.1.user jsmith
XmlDsa.httpTypes.1.password pwd
XmlDsa.httpTypes.1.realm primary
XmlDsa.httpTypes.1.connectionsPerHost 5

Reading XML documents
You can read XML documents from within a policy.

Procedure
1. Retrieve the document data item.

You retrieve the data item by calling the GetByFilter function and passing the
name of the super data type and a filter string.

2. Retrieve the root level element data item.
To retrieve the root level element data item, use the GetByLinks function.

3. Retrieve the child element data item.
To retrieve child element data items, you can use successive calls to the
GetByLinks function or you can use the embedded linking syntax.

4. Access attribute values.
To access an element data item's attribute values, reference the corresponding
data type fields.

Retrieving the document data item
You retrieve the data item by calling the GetByFilter function and passing the
name of the super data type and a filter string.

The content of the filter string varies depending on whether the data source is an
XML string, XML file, or XML data that is located on an HTTP server.

Chapter 9. Working with the XML DSA 87

For XML strings, the filter is the entire XML string that you want to read. For XML
files, the filter is an empty string. For XML over HTTP, the filter string is an
expression that specifies the method to use in retrieving the XML data and the
path to a script or executable file that provides the data on the HTTP server. For
more information, see “XML over HTTP.”

This example shows how to retrieve the document data item that is associated
with an XML string, where the corresponding super type is named
XML_string_SuperType:
// Call GetByFilter and pass the name of the super type
// and the filter string

Type = "XML_string_superType";
Filter = "<alert><node>Node1234</node><summary>
Node not responding</summary></alert>";
CountOnly = False;
DocDataItem = GetByFilter(Type, Filter, CountOnly);

This example shows how to retrieve the document data item that is associated
with an XML file, where the corresponding super type is named
XML_file_superType:
// Call GetByFilter and pass the name of the super type// and the filter
stringType = "XML_file_superType";Filter = "";CountOnly = False;DocDataItem =
GetByFilter(Type, Filter, CountOnly);

XML over HTTP
For XML over HTTP, the filter string is an expression that specifies the method to
use in retrieving the XML data and the path to a script or executable file that
provides the data on the HTTP server.

The XML DSA uses either the GET or POST method to retrieve the XML data. For
example::
Operation = ’method’ AND FilePath = ’path’

Where method is either GET or POST and path is the location of the script or
executable relative to the base URL. You specify the base URL when you set the
mapping information for the document in the XmlHttpTypes file.

Note: The FilePath specification can include query string values. You can retrieve
XML documents from the HTTP server that are dynamically created depending on
values that are sent by Netcool/Impact as part of the HTTP request.

This example shows how to use an HTTP GET request to retrieve the document
data item that is associated with XML data. In this example, the name of the super
data type is XML_http_superType and the location of the script that provides the
XML data is getXMLdoc.pl.
// Call GetByFilter and pass the name of the super type// and the filter
stringType = "XML_http_superType";Filter = "Operation = ’GET’ AND
FilePath = ’getXMLdoc.pl?node=NodeXYZ’";CountOnly = False;DocDataItem =
GetByFilter(Type, Filter, CountOnly);

Retrieving the root level element data item
To retrieve the root level element data item, use the GetByLinks function.

When you call GetByLinks, you must pass the name of the root level element data
type, an empty filter string, and the document data item.

88 Netcool/Impact: DSA Reference Guide

This example shows how to use GetByLinks to retrieve the root level element data
item.
// Call GetByLinks and pass the name of theDataTypes = {"XML_alert"};Filter = "";
MaxNum = "10000";DataItems = DocDataItem;RootDataItem =
GetByLinks(DataTypes, Filter, MaxNum, DataItems);

Retrieving child element data items
To retrieve child element data items, you can use successive calls to the GetByLinks
function or you can use the embedded linking syntax.

This example shows how to use the linking syntax to retrieve the first child
element data item that is linked to the root level element data item, where the data
type of the child data item is XML_body.
ChildNode = RootDataItem[0].links.XML_body.first;

This example shows how to retrieve an array that contains all child element data
items that are linked to the root level element data item.
ChildNodes = RootDataItem[0].links.XML_body.array;

Accessing attribute values
To access an element data item's attribute values, reference the corresponding data
type fields.

This example shows how to log the value of the ID attribute that is associated with
the current element data item:
Log("The message ID is: " + DataItem.id);

This example shows how to log the PCDATA value that is associated with the
current element data item:
Log(DataItem.PCDATA);

Sample policies
The DSA provides four sample policies.
v XmlStringTestPolicy

v XmlFileTestPolicy

v XmlHttpTestPolicy

v XmlXsdFileTestPolicy

These policies are configured to use the TOC.dtd, TOC.xsd and TOC.xml files in the
$IMPACT_HOME/impact/dsa/XmlDsa directory.

XmlStringTestPolicy
The XmlStringTestPolicy shows how to use the XML DSA to read data from an
XML string.

The policy reads the contents of an XML-formatted string and then prints the data
to the policy log. Before you use this policy, you must run the create DTD types
script as follows:
./CreateDtdTypes.sh NCI admin netcool ../TOC.dtd XmlStringTOC STEST_

Chapter 9. Working with the XML DSA 89

You do not need to edit the contents of the XmlFileTypes configuration file. By
default, this file contains the necessary data source mappings. The data type
mappings are defined as follows:
XmlDsa.fileTypes.2.typeName XMLStringTOC
XmlDsa.fileTypes.2.dtdFile dsa/XmlDsa/TOC.dtd
XmlDsa.fileTypes.2.xmlFile -
XmlDsa.fileTypes.2.prefix STEST_

XmlFileTestPolicy
The XmlFileTestPolicy shows how to use the XML DSA to read data from an XML
file.

This policy reads the contents of the TOC.xml file and then prints the data to the
policy log. Before you use this policy, you must run the create DTD types script as
follows:
./CreateDtdTypes.sh NCI admin netcool ../TOC.dtd XmlFileTOC FTEST_

You do not need to edit the contents of the XmlFileTypes configuration file. By
default, this file contains the necessary data source mappings. The following are
the data type mappings:
XmlDsa.fileTypes.1.typeName XmlFileTOC
XmlDsa.fileTypes.1.dtdFile dsa/XmlDsa/TOC.dtd
XmlDsa.fileTypes.1.xmlFile dsa/XmlDsa/TOC.xml
XmlDsa.fileTypes.1.prefix FTEST_

XmlHttpTestPolicy
The XmlHttpTestPolicy shows how to use the XML DSA to read data from a
location on an HTTP server.

This policy reads the XML data from an HTTP server and then prints it to the
policy log. Before you use this policy, you must run the CreateDtdTypes script as
follows:
./CreateDtdTypes.sh NCI admin netcool ../TOC.dtd XmlHttpTOC HTEST_

You must also install a Perl CGI script on the HTTP server that generates the XML
output that is requested by the DSA. This script is named xml.cgi and is located in
$IMPACT_HOME/dsa/XmlDsa. You must check to make sure that the first line of the
script references the actual location of the Perl executable file on the system before
you install the script. To install, copy the script into the cgi-bin directory that is
used by the HTTP server.

After you install the script, modify the XmlHttpTypes configuration file to reflect
the location of the script and to include a valid user name and password for the
authentication realm, if any.

The following example shows the data type mappings:
XmlDsa.httpTypes.1.typeName XmlHttpTOC
XmlDsa.httpTypes.1.dtdFile dsa/XmlDsa/TOC.dtd
XmlDsa.httpTypes.1.prefix HTEST_
XmlDsa.httpTypes.1.url http://localhost:9080
XmlDsa.httpTypes.1.user John
XmlDsa.httpTypes.1.password Smith
XmlDsa.httpTypes.1.realm basicrealm

90 Netcool/Impact: DSA Reference Guide

XmlXsdFileTestPolicy
The XmlXsdFileTestPolicy shows how to use the XML DSA to read data from an
XML file.

This policy reads XML data returned from a URL and then prints the data to the
policy log. Before you use this policy, you must run the create XSD types script as
follows:
./CreateXsdTypes.sh NCI admin netcool ../TOC.xsd XmlXsdFileTOC XSDFTEST_

where filename is the name and path of an XML file stored on the file system.

You do not need to edit the contents of the XmlFileTypes configuration file. By
default, this file contains the necessary data source mappings. The following are
the data type mappings:
XmlDsa.fileTypes.2.typeName XmlXsdFileTOC XmlDsa.fileTypes.2.xsdFile
dsa/XmlDsa/TOC.xsdXmlDsa.fileTypes.2.xmlFile
dsa/XmlDsa/TOC.xmlXmlDsa.fileTypes.2.prefix
XSDFTEST_XmlDsa.fileTypes.2.isXsd true

Chapter 9. Working with the XML DSA 91

92 Netcool/Impact: DSA Reference Guide

Chapter 10. Working with IPL to XML functions

Data source adapters allow for access to data from a wide variety of sources. In
many cases, the data is retrieved from SQL data sources and delivered as Impact
Policy Language (IPL) objects (contexts). One challenge for policy writers has been
converting these IPL contexts into XML strings for applications with interfaces that
expect data in XML format. To facilitate this task, a set of IPL to XML functions has
been developed that can be used to generate an XML string from an IPL object.

IPL to XML functions overview

You use IPL to XML functions to generate an XML string from an IPL object. What
effectively happens is a top-level IPL object, referred to as the XML document
object, is transformed into XML. IPL objects nested within the document object,
referred to as element objects, become XML elements. The functions are used to
create the XML document and element objects and to set XML attributes, content,
and comments.

XML document object

The XML document object is the base object. XML element objects, attributes,
content, and comments are added to the XML document object. It is the XML
document object that is converted into an XML string.

For information about how to create the XML document object, see “Creating the
XML document object” on page 94.

XML element objects

XML element objects are added to the XML document object or to each other (for
nested XML elements). After you created and added an XML element object you
can use other functions to add XML attributes, content, and comments to it. For
more information about the IPL to XML functions used to create and add XML
element objects, see “Adding a sub element” on page 94 and “Creating an
unassociated element” on page 95.

Adding XML attributes to element objects

You can use on of three methods to add attributes to XML element objects. The
simplest method is to pass an element object, attribute name, and attribute value to
the IPLtoXML.addAttribute() function. For more information about this method,
see “Adding XML attributes to element objects, simple approach” on page 95.

The second method requires creating a separate XML attribute object and adding
that XML attribute object to the XML element object using the
IPLtoXML.addAttributeObject() function. For more information about how to use
this function, see “Adding XML attributes to element objects that use Attribute
objects” on page 96. This method is useful in cases where you expect to use the
same attribute and value in many places in your XML.

You use the third method to add several attributes at once using the
IPLtoXML.addOrgNodeAttributes() function. Use this function to quickly take data

© Copyright IBM Corp. 2006, 2014 93

from a data type lookup and add all the fields to an XML element object as
attributes. For more information about this method, see “Adding XML attributes to
element objects adding attributes from an OrgNode” on page 97.

Adding XML content to element objects

You can add content to any element and append additional content to it later. For
more information about how to add and append content to element objects, see
“Adding the content to an XML element object” on page 97 and “Appending
content to XML element objects” on page 98.

XML comments

Using the addCommentToElement function you can add comments to any XML
element. The function also puts in the XML commenting code (<!-- -->) for you
so do not have to add it manually.

For more information about using this function, see “Adding XML comments to
element objects” on page 98.

Nesting XML elements

In cases where you created a stand-alone XML element object using the newElement
function you can still nest that XML element object using the addElement function.
In most cases you, will not be creating stand-alone objects using the newElement
function but instead will be creating and nesting XML element objects at the same
time using the newSubElement function.

For more information about adding XML element objects to each other, see
“Adding XML element objects to each other (nesting)” on page 99.

Creating the XML document object

Procedure

Use this function to create the XML document object:
IPLtoXML.newDocument(myXMLDocumentObject)

The myXMLDocumentObject variable becomes the new XML document object.

Example
newDocument(REM_Album);

Adding a sub element
This function creates an XML element object and nests it within the parent element
object in one step.

Procedure

To add a sub element, use this function:
IPLtoXML.newSubElement(parentElement, myElement, elementType)

where

94 Netcool/Impact: DSA Reference Guide

parentElement
This element or document object must exist.

myElement
This variable becomes the new XML element of type elementType nested
within the parentElement.

elementType
The type of XML element to create.

Example

IPL:
newDocument(myCars);
newSubElement(myCars, myElement, “Honda”);
newSubElement(myElement, driver1, “susi”);

Generated XML:
<Honda><susi/></Honda>

Creating an unassociated element
Rather than using this function to create an unassociated element you can use the
newSubElement function to create and nest an XML element object in one step.

Procedure

To create an unassociated element, use this function:
IPLtoXML.newElement(myElement, elementType)

where

myElement
This variable becomes the new XML element of type elementType.

elementType
The type of XML element to create.

Example

IPL:
newElement(myElement, “Honda”);

Generated XML:
<Honda/>

Adding XML attributes to element objects, simple approach

Procedure

To add XML attributes to an element object, use this function:
IPLtoXML.addAttribute(myElementObject, attributeName, attributeValue)

where

myElementObject
The element to add the attribute to.

Chapter 10. Working with IPL to XML functions 95

attributeName
The string name of the attribute to add.

attributeValue
The value of the attribute.

Example

IPL:
newElement(myForester, “Subaru”);
addAttribute(myForester, “year”, 2003);

Generated XML:
<Subaru year=”2003”/>

Note: Use addAttribute when you want to avoid creating the attribute object.

Adding XML attributes to element objects that use Attribute objects
To add XML attributes to an element object that Attribute objects follow this
procedure.

Procedure
1. Create the attribute object. Use the following function:

IPLtoXML.newAttributeObject(attributeObject, attributeName, attributeValue)

where

attributeObject
This variable becomes the new XML attribute object.

attributeName
The name of the attribute.

attributeValue
The value for the attribute.

IPL:
newAttributeObject(carYear, “year”, 2003);

Generated XML:
year=”2003”

Note: Attribute objects are useful because they can then be reused and added
to multiple elements in your code.

2. Add the attribute object to an element object. Use the following function:
IPLtoXML.addAttributeObject(myElementObject, attributeObject)

where

myElementObject
The XML element object to which the attribute is added

attributeObject
The XML attribute object that is added to myElementObject.

IPL:
newElement(myForester, “Subaru”);
newAttribute(carYear, “year”, 2003);
addAttributeObject(myForester, carYear);

96 Netcool/Impact: DSA Reference Guide

Generated XML:
<Subaru year=”2003”/>

Adding XML attributes to element objects adding attributes from an
OrgNode

Procedure

To add attributes from an OrgNode, use this function:
IPLtoXML.addOrgNodeAttributes(elementObject, OrgNode)

where

elementObject
The element object to add the attributes to.

OrgNode
An IPL object whose fields you want to add to element as attributes. The
object could have come from a lookup or could have been built using
newobject();.

Example

IPL:
newElement(myForester, “Subaru”);
og=newobject();
og.color=”blue”;
og.doors=4;
og.turbo=”no”;
addOrgNodeAttributes(myForester, og);

Generated XML:
<Subaru color=”blue” doors=”4” turbo=”no”/>

Adding the content to an XML element object
Content can be added to any element.

Procedure

To add the content to an XML element object, use this function:
IPLtoXML.setContent(myElementObject, content)

where

myElementObject
The XML element object to add the content to.

content
The text string to add to myElementObject as content.

Example

IPL:
newElement(myForester, “Subaru”);
setContent(myForester, “Extra Car”);

Chapter 10. Working with IPL to XML functions 97

Generated XML:
<Subaru>Extra Car</Subaru>

Appending content to XML element objects
Additional content can be appended to any element.

Procedure

To append the content to an XML element object, use this function:
IPLtoXML.appendContent(myElementObject, content)

where

myElementObject
The XML element object to append the content to.

content
The text string to append to the existing content.

Example

IPL:
newElement(myForester, “Subaru”);
setContent(myForester, “Extra Car”);
appendContent(myForester, “ driven by Dad”);

Generated XML:
<Subaru>Extra Car driven by Dad</Subaru>

Adding XML comments to element objects

Procedure

To add XML comments to element objects, use this function:
IPLtoXML.addCommentToElement(myElementObject, comment)

where

myElementObject
The XML element object to add the XML comment to.

comment
The text string that becomes the XML comment. XML remarking code <!--
-- > is added by the function. Do not add it yourself.

Example

IPL:
newElement(myForester, “Subaru”);
addCommentToElement(myForester, “mom drives the element”);

Generated XML:
<Subaru><!-- mom drives the element --></Subaru>

98 Netcool/Impact: DSA Reference Guide

Adding XML element objects to each other (nesting)

Procedure

To nest an XML element object use this function:
IPLtoXML.addElement(dore, myElementObject)

where

dore The XML document or element object to add myElementObject to.

myElementObject
The XML element object that is added to the dore.

Example

IPL:
newElement(myCars, “Cars”);
newElement(myForester, “Subaru”);
addElement(myCars, myForester);

Generated XML:
<Cars><Subaru/></Cars>

Generating XML strings from document objects

Procedure

To generate an XML string from the document object, use this function:
IPLtoXML.generateXML(xmlPiece, XML)

where

xmlPiece
Either an entire XML document object or just one XML element object.

XML The variable to hold the XML string that is generated from xmlPiece.

Example

IPL:
STACK=NewJavaObject("java.util.Stack", {}); //
this global variable is required for the IPLtoXML conversion
newDocument(carXML);
newElement(myForester, “Subaru”);
addElement(carXML, myForester);
addCommentToElement(myForester, “mom drives the element”);
generateXML(carXML, Output);

This XML is generated in the Output variable:
<?xml version="1.0" encoding="UTF- 8"?><Subaru><!-- mom drives
the element--></Subaru>

Chapter 10. Working with IPL to XML functions 99

Replacement of default XML entities

The function replaceEntities() replaces the following default XML entities in
XML content and attributes:
v & ampersand, replaced with &
v < less than, replaced with <
v > greater than, replaced with >
v ’ apostrophe, replaced with '
v " quotation mark, replaces with "

If you have additional entities that need to be replaced then edit the function
replaceEntities(x) within the IPL to XML policy.

Element ordering in XML

The order in which elements at any particular nesting depth are added to the
generated XML is based on the element object variable name.

Let us take the following policy for example:
IPLtoXML.newDocument(theWeather);
IPLtoXML.newSubElement(theWeather, system, “weatherSystem”);
IPLtoXML.newSubElement(system, sub01, “tornado”);
IPLtoXML.newSubElement(system, sub05, “thunderstorm”);
IPLtoXML.newSubElement(system, SUB, “hail”);
IPLtoXML.addComment(sub05, “bad thunderstorms and a tornado
where I live today”);

The resulting XML looks like this example:
<weatherSystem><hail/><tornado/><thunderstorm><!-- bad
thunderstorms and a tornado where I live today
--></thunderstorm></weatherSystem>

The hail, tornado, and thunderstorm elements are all at the same depth in the
XML nesting. The hail element was added first, element object name SUB. The
tornado element was added second, element object name sub01. The thunderstorm
element was added last sub05. If the element order in the XML is important then
name the element objects carefully.

Examples of IPLtoXML functions usage

This section contains three examples of usage of IPLtoXML functions.

A simple example

This example shows how the different IPLtoXML functions can be used to generate
a simple XML structure.
STACK=NewJavaObject("java.util.Stack", {});//required for
recursion in generateXML function
IPLtoXML.newDocument(docObj);
IPLtoXML.newElement(cars, "cars");
IPLtoXML.addElement(docObj, cars);
IPLtoXML.addAttribute(cars, "familyName", "Daniel");
IPLtoXML.setContent(cars, "the cars owned by a family");
IPLtoXML.newElement(subaru, "car");
IPLtoXML.newElement(honda, "car");

100 Netcool/Impact: DSA Reference Guide

IPLtoXML.addElement(cars, subaru);
IPLtoXML.addElement(cars, honda);
IPLtoXML.newAttributeObject(carLocation, "location", "in the
garage");
IPLtoXML.addAttributeObject(subaru, carLocation);
IPLtoXML.addAttributeObject(honda, carLocation);
IPLtoXML.addAttribute(honda, "color", "black");
IPLtoXML.addAttribute(honda, "doors", 4);
IPLtoXML.addAttribute(honda, "driver", "susi");
IPLtoXML.addAttribute(honda, "model", "honda element");
foresterDetails=newobject();
foresterDetails.color="blue";
foresterDetails.doors="4";
foresterDetails.driver="tom";
foresterDetails.model="subaru forester";
IPLtoXML.addOrgNodeAttributes(subaru, foresterDetails);
IPLtoXML.newElement(hondaDriver, "Driver");
IPLtoXML.addAttribute(hondaDriver, "Name", "Susan Daniel");
IPLtoXML.addAttribute(hondaDriver, "Age", 33);
IPLtoXML.addCommentToElement(hondaDriver, "mother of
twins");
IPLtoXML.addElement(honda, hondaDriver);
IPLtoXML.generateXML(docObj, xml);
log(xml);

The results of logging the variable XML:
07 Oct 2007 17:11:06,888: SynchronousMessageProcessor:
Parser log: <?xml version="1.0" encoding="UTF-8"?><cars
familyName="Daniel">the cars owned by a family<car
color="blue" doors="4" driver="tom" location="in the garage"
model="subaru forester"/><car color="black" doors="4"
driver="susi" location="in the garage" model="honda
element"><Driver Age="33" Name="Susan Daniel"/><!-- mother
of twins -- ></car></cars>

ObjectServer event example

This example shows how IPLtoXML is run on an event from the Netcool/OMNIbus
ObjectServer. Let us assume that we start with an Netcool/OMNIbusevent
generated from the Netcool/OMNIbus Simnet probe.
1. Create an XML document object:

IPLtoXML.newDocument(eventXML);

2. Create an XML element object and add it to the XML document object:
IPLtoXML.newSubElement(eventXML, theEvent, “omniEvent”);

3. Add the fields in the Event Container to the theEvent element object as
attributes:
IPLtoXML.addOrgNodeAttributes(theEvent, EventContainer);

4. Use the Java DSA to create a Java memory stack in a global variable called
STACK:
STACK=NewJavaObject("java.util.Stack", {});

Note: STACK is required every time the generateXML() function is called and
must be a global variable (defined outside of any function). IPLtoXML uses
recursion and (v4.x) you cannot do recursive functions in the Impact parser
without a separate memory stack.

5. Call the GenerateXML() function itself. Pass the function the XML document
object, eventXML, and a results variable to put the output into:
IPLtoXML.GenerateXML(eventXML, results);

Chapter 10. Working with IPL to XML functions 101

The generated XML looks like this example:
<?xml version="1.0" encoding="UTF-8"?><omniEvent
Acknowledged="0" Agent="LinkMon" AlertGroup="Link"
AlertKey="" Class="3300" Customer="" EventId=""
EventReaderName="OMNIbusEventReader" ExpireTime="0"
FirstOccurrence="1188488450" Flash="0" Grade="0"
Identifier="link6LinkMon1Link" InternalLast="1188488841"
KeyField="8689" LastOccurrence="1188488841"
LocalNodeAlias="" LocalPriObj="" LocalRootObj=""
LocalSecObj="" Location="" Manager="Simnet Probe"
NmosCauseType="0" NmosObjInst="0" NmosSerial="" Node="link6"
NodeAlias="" OwnerGID="0" OwnerUID="65534" PhysicalCard=""
PhysicalPort="0" PhysicalSlot="0" Poll="0" ProcessReq="0"
ReceivedWhileImpactDown="1" RemoteNodeAlias=""
RemotePriObj="" RemoteRootObj="" RemoteSecObj=""
Serial="8689" ServerName="NCOMS" ServerSerial="8689"
Service="" Severity="0" StateChange="1188488841"
Summary="Link Up on port" SuppressEscl="0" Tally="8"
TaskList="0" Type="2" URL="" X733CorrNotif=""
X733EventType="0" X733ProbableCause="0" X733SpecificProb=""/
>

There is a single XML Element called omniEvent. Each of the fields in the original
Event Container are XML attributes of omniEvent.

Example of generating WAAPI XML using IPL

This example shows how IPL to XML can be used to create an XML string that can
be passed to the Netcool/Webtop API (WAAPI).
//create the XML Document object
IPLtoXML.newDocument(waapiXML);
//first element: the methodCall
IPLtoXML.newSubElement(waapiXML, myMethodCall,
"methodCall");
//a method element nested in the methodCall element
IPLtoXML.newSubElement(meMethodCall, method1, “method”);
//attributes for method1
IPLtoXML.addAttribute(method1, “methodName”,
“entity.createOrReplaceEntity”);
//entitygroup element nested in method element
IPLtoXML.newSubElement(method1, entityGroup01,
“entitygroup”);
//attributes for entitygroup
IPLtoXML.addAttribute(entityGroup01, “name”,
“support”);//this group was added to NGF
//entity element nested in entitygroup
IPLtoXML.newSubElement(entityGroup01, entity01, “entity”);
//entity attributes
IPLtoXML.addAttribute(entity01, “name”, “ncientity01”);
IPLtoXML.addAttribute(entity01, “filter”, “Severity > 4”);
IPLtoXML.addAttribute(entity01, “metriclabel”, “tom”);
IPLtoXML.addAttribute(entity01, “metricshow”, “Average”);
IPLtoXML.addAttribute(entity01, “metricof”, “Severity”);
//entitylist nested in entitygroup
IPLtoXML.newSubElement(entityGroup01, entitylist01,
“entitylist”);
//entitylist attributes
IPLtoXML.addAttribute(entitylist01, “name”,
“ncientitylist01”);
IPLtoXML.addAttribute(entitylist01, “list”, “AllEvents”);
IPLtoXML.addAttribute(entitylist01, “view”, “basic”);
IPLtoXML.addAttribute(entitylist01, “metriclabel”, “tom”);

The resulting XML string:

102 Netcool/Impact: DSA Reference Guide

<?xml version=“1.0” encoding=“UTF-8”?><methodCall><method
methodName=“entity.createOrReplaceEntity”><entitygroup
name=“support “><entity filter=“Severity > 4”
metriclabel=“tom” metricof=“Severity” metricshow=“Average”
name=“ncientity01”/><entitylist list=“AllEvents”
metriclabel=“tom” name=“ncientitylist01”
view=“basic”/></entitygroup></method></methodCall>

This string can be passed to WAAPI via JRExec or Command/Response to create
the Webtop entity.

Chapter 10. Working with IPL to XML functions 103

104 Netcool/Impact: DSA Reference Guide

Chapter 11. Working with the SNMP DSA

The SNMP DSA is a data source adaptor that is used set and retrieve management
information stored by SNMP agents.

SNMP DSA overview
The SNMP DSA is a data source adaptor that is used to set and retrieve
management information stored by SNMP agents. It is also used to send SNMP
traps and notifications to SNMP managers.

The SNMP DSA is installed automatically when you install Tivoli Netcool/Impact.
You must make sure that any MIB files that are to be used by the DSA are located
in the $IMPACT_HOME/impact/dsa/snmpdsa/mibs directory when you start the Impact
Server. For more information about installing MIB files, see “Installing MIB files”
on page 107. You are not required to perform any additional installation or
configuration steps.

You must perform the following tasks when you use the SNMP DSA:
v Create one data source for each SNMP agent that you want to access using the

DSA, or create a single data source and use it to access all agents. For more
information about working with SNMP data sources, see “Working with SNMP
data sources” on page 108.

v Create data types that you will use to access variables and tables managed by
SNMP agents. For more information about working with SNMP data types, see
“Working with SNMP data types” on page 110.

v Write one or more policies that set or retrieve variables and tables managed by
SNMP agents, or that send SNMP traps and notifications. For more information
about SNMP policies, see “SNMP policies” on page 112.

SNMP data model
An SNMP data model is an abstract representation of SNMP data managed by
agents in your environment.

SNMP data models have the following elements:
v SNMP data sources
v SNMP data types

SNMP data sources
SNMP data sources represent an agent in the environment.

The data source configuration specifies the host name and port where the agent is
running, and the version of SNMP that it supports. For SNMP v3, the
configuration also optionally specifies authentication properties.

You can either create one data source for each SNMP agent that you want to access
using the DSA, or you can create a single data source and use it to access all
agents. You can create and configure data sources using the GUI. After you create
a data source, you can create one or more data types that represent the OIDs of
variables managed by the corresponding agent.

© Copyright IBM Corp. 2006, 2014 105

SNMP data types
SNMP data types are Netcool/Impact data types that specify the structure and
content of data associated with an agent.

The identity of the agent is determined by the data source that is associated with
the data type. Each data type specifies one or more object IDs (OIDs) that reference
variables managed by the agent.

The SNMP DSA supports the following categories of data types:
v Packed OID data types
v Table data types

Previous versions of this DSA supported another category of data type called
discrete OID data types. This category was used to reference single variable OIDs.
In this version of the DSA, you access single variables in the exact same way that
you access the sets of variables represented by packed OID data types.

For more information about OIDs and SNMP variables, see the reference
documentation for the agent you want to access using the SNMP DSA.

Packed OID data types
Packed OID data types are data types that reference the OIDs of one or more
variables managed by a single agent. You use this category of data type when you
want to access single variables or sets of related variables. When you create a
packed OID data type, you specify the name of the associated data source, the OID
for each variable and options that determine the behavior of the DSA when
connecting to the agent.

For more information about creating packed OID data types, see “Working with
SNMP data types” on page 110.

Table data types
Table data types are data types that reference the OIDs of one or more SNMP
tables managed by a single agent. When you create a table data type, you specify
the name of the associated data source, the OID for the table and options that
determine the behavior of the DSA when connecting to the agent.

For more information about creating data types, see “Creating SNMP data types”
on page 110.

SNMP DSA process
The SNMP DSA process has the following phases:
v Sending Data to Agents
v Retrieving Data from Agents
v Sending Traps and Notifications to Managers
v Handling Error Conditions
v Handling Timeouts

Sending data to agents
The DSA supports two functions in the Netcool/Impact policy language (IPL) that
allow you to send data to an SNMP agent. These functions are the standard
function AddDataItem and the SNMP function SnmpSetAction.

106 Netcool/Impact: DSA Reference Guide

When Netcool/Impact encounters a call to one of these functions in a
Netcool/Impact policy, it assembles an SNMP SET command using the information
specified in the function parameters and passes this command to the DSA for
processing. The DSA then sends the command to the agent.

If the SET command is successful, the agent sends a confirmation message to the
DSA and Netcool/Impact continues processing the policy.

Retrieving data from agents
The DSA supports three functions that allow you to retrieve data from an agent.
These functions are the standard function GetByFilter and the SNMP functions
SnmpGetAction and SnmpGetNextAction.

When Netcool/Impact encounters a call to one of these functions in a
Netcool/Impact policy, it assembles an SNMP GET or GETNEXT command using the
information specified in the function parameters. It then passes this command to
the DSA for processing. The DSA then sends the command to the agent.

If the GET or GETNEXT command is successful, the agent sends the requested data
back to the DSA. The DSA returns the information to Netcool/Impact, which then
stores the information in a policy-level variable that you can access in subsequent
parts of the policy.

Sending traps and notifications to managers
The DSA supports an SNMP function named SNMPTrapAction that you use to send
traps or notifications to an SNMP manager.

When the Netcool/Impact encounters a call to SNMPTrapAction, it assembles an
SNMP TRAP command using the information specified in the function parameters.
It then passes this command to the DSA for processing. The DSA then sends the
command to the manager.

If the TRAP command is successful, the manager sends a confirmation message to
the DSA and the policy is processed.

Handling error conditions
If a SET, GET, GETNEXT, or TRAP command sent to an agent or manager is
unsuccessful, the DSA returns an error string to Netcool/Impact that can be
printed to the policy log or otherwise handled in the body of the policy.

Handling timeouts
If an agent or manager does not respond to a SET, GET, GETNEXT, or TRAP command
sent by the DSA within the timeout period specified in the function call or the
related SNMP data type, the DSA sets a timeout message in the error string and
returns it to Netcool/Impact. This error string can be handled in the body of the
policy in the same was as any other error message.

Installing MIB files
You must make sure that any MIB files that are to be used by the DSA are located
in the $IMPACT_HOME/impact/dsa/snmpdsa/mibs directory when you start the
Netcool/Impact server. By default, this directory contains the RFC1213-MIB and
RFC1271-MIB files. Other commonly used MIB files are installed with
Netcool/Impact and are located in the $IMPACT_HOME/impact/dsa/snmpdsa/addMibs

Chapter 11. Working with the SNMP DSA 107

directory. You must copy these or other MIB files that you provide to the
$IMPACT_HOME/impact/dsa/snmpdsa/mibs directory before you can use them with
the DSA. After you copy a new file to this directory, you must stop and restart the
Netcool/Impact server.

Working with SNMP data sources
You use the GUI to perform the following tasks with SNMP data sources:
v Create new data sources
v Edit data sources
v Delete data sources

Creating SNMP data sources
About this task

You can either create one data source for each SNMP agent that you want to access
using the DSA, or you can create a single data source and use it to access all
agents.

If you plan to use the standard data-handling functions AddDataItem and
GetByFilter to access SNMP data, you must create a separate data source for each
agent. In this scenario, the host name, port, and other connection information for
the agent is encapsulated as part of the data source configuration. When you make
a call to the AddDataItem or GetByFilter function, you pass the name of a data
type associated with the data source and Netcool/Impact uses this information to
derive the identity and location of the agent in the environment.

If you plan to use the SNMP functions that are provided with this release of the
DSA, you can create a single data source and use it to access all agents. In this
scenario, the host name and port are passed as runtime parameters when you call
each function. You can dynamically specify the agent during policy runtime that is
based on host name information from incoming ObjectServer events or derived
from other external data sources.

This version of the DSA provides additional support for SNMP v3 authentication.
If you are creating a data source for use with SNMP v3, you must perform
additional configuration tasks.

Creating SNMP v1 and v2 data sources
Use this procedure to create an SNMP v1 or v2 data source.

Procedure
1. Log in to the Netcool/Impact GUI using a web browser.
2. Click the Data Sources tab and select SNMP from the Source list.
3. Click the New Data Source button.

The New Data Source dialog box opens.
4. Type a unique name for the data source in the Data Source Name field.
5. If you are creating this data source for use with the standard data-handling

functions AddDataItem and GetByFilter, type the host name or IP address
where the agent resides in the Host Name field and the port in the Port field.
If you are creating this data source for use with the new SNMP functions, you
can accept the default values with no changes.

108 Netcool/Impact: DSA Reference Guide

6. Type the name of the SNMP read-community in the Read Community field.
The default is public.

7. Type the name of the SNMP write-community in the Write Community field.
The default is public.

8. Type a timeout value in seconds in the Timeout field. When the DSA connects
to an agent associated with this data source, it waits for the specified timeout
period before returning an error to Netcool/Impact.

9. Select 1 or 2 from the Version list.
10. Click OK.

Creating SNMP v3 data sources
About this task

To create a data source with SNMP v3 authentication, you specify the configuration
properties and then provide the information required for the agent to authenticate
the DSA as an SNMP user. The authentication parameters can be overridden by
calls to the SNMP functions in the Impact Policy Language.

For information about authentication parameters, see the documentation provided
by the SNMP agent and manager.

To create an SNMP v3 data source:

Procedure
1. Log in to the GUI using a web browser.
2. Click the Data Sources tab and select SNMP from the Source list.
3. Click the New Data Source button.

The New Data Source dialog box opens.
4. Type a data source name, the host name and IP address of the SNMP agent,

community strings and timeout values as specified in the previous section.
5. Select 3 from the Version list.
6. Type the name of an SNMP v3 authentication user in the User field.
7. Select a protocol from the Authentication Protocol list. The default is MD5.
8. Type the password for the authentication user in the Password field.
9. Select a protocol from the Privacy Protocol field.

10. Type a privacy password in the Privacy Password field.
11. Type a context ID in the Context ID field.
12. Type a context name in the Context Name field.
13. Click OK.

Editing SNMP data sources
You can edit the configuration for a data source after you create it. To edit an
SNMP data source:

Procedure
1. Log in to the GUI using a web browser.
2. Click the name of the data source in the Data Sources tab. The Edit Data

Source window opens.
3. Set the configuration properties for the data source as described in the previous

sections.

Chapter 11. Working with the SNMP DSA 109

4. Click OK.

Results

Any changes to the configuration take effect immediately after you finish editing
the data source. There is no need to restart the Impact Server after making a
change.

Deleting an SNMP data source
About this task

To delete an SNMP data source:

Procedure
1. Log in to the Netcool/Impact GUI using a web browser.
2. In the Data Sources tab, click the Delete Data Source icon next to the name of

the data source you want to delete.

Working with SNMP data types
You use the GUI to perform the following tasks with SNMP data types:
v Create new data types
v Edit data types
v Delete data types

Creating SNMP data types
About this task

If you plan to use the standard data-handling functions AddDataItem and
GetByFilter to access SNMP data, you must create a separate data type for each
set of variables (packed OID data types) or each set of tables (table data types) that
you want to access. In this scenario, the object IDs (OIDs) for the variables or
tables are encapsulated as part of the data type configuration. When you make a
call to the AddDataItem or GetByFilter function, you pass the name of a data type
and this information is used to determine the identity of the variables or table.

If you plan to use the SNMP functions that are provided with this release of the
DSA, you can create a single data type for each data source and use it to access all
the variables and tables associated with the agent. In this scenario, the variable or
table OIDs are passed as runtime parameters when you call each function. You can
dynamically specify the OIDs during policy runtime that is based on information
from an external data source.

Creating packed OID data types
Packed OID data types are data types that reference the OIDs of one or more
variables managed by a single agent. You use this category of data type when you
want to access single variables or sets of related variables. When you create a
packed OID data type, you specify the name of the associated data source, the OID
for each variable and options that determine the behavior of the DSA when
connecting to the agent.

To create a packed OID data type:
1. Log in to the Netcool/Impact GUI using a web browser.

110 Netcool/Impact: DSA Reference Guide

2. Click the Data Types tab and select an SNMP data source from the Data
Source list.

3. Click the New Data Type icon. The New Data Type editor opens.
4. Type a name for the data type in the Data Type Name field.
5. Select an SNMP data source from the Data Source Name field. By default, the

data source you chose in step 2 is selected.
6. Select Packed from the OID Configuration list.
7. If you are creating this data type for use with the standard data-handling

functions AddDataItem and GetByFilter, you must create an attribute on the
data type for each variable you want to access. To create an attribute, click the
New Attribute button and specify an attribute name and the OID for the
variable.
If you are creating this data source for use with the new SNMP functions, you
do not need to explicitly create attributes for each variable. In this scenario, you
pass the variable OIDs when you make each function call in the
Netcool/Impact policy.

8. Click Save.

Creating table data types
Use this procedure to create a table data type.

Procedure
1. In the data types tab, select an SNMP data source from the list.
2. Click the New Data Type button to open the New Data Type editor.
3. Type a name for the data type in the Data Type Name field.

Important:

The data type name must match the table name that will be queried, for
example, ifTable, or ipRouteTable.

4. Select an SNMP data source from the Data Source Name field. By default, the
data source you chose in step 2 is selected.

5. Select Table from the OID Configuration list.
6. If you are creating this data type for use with the standard data-handling

functions AddDataItem and GetByFilter, you must create a new attribute on the
data type for each table you want to access. To create an attribute, click the
New Attribute button and specify an attribute name and the OID for the table.

Important:

The attributes are the column names in each table. For example, in the
following ifTable, the attributes will be ifIndex, ifDescr and other column
names:
Column Names OID
ifIndex .1.3.6.1.2.1.2.2.1.1
ifDescr .1.3.6.1.2.1.2.2.1.2
... ...

If you are creating this data source for use with the new SNMP functions, you
do not need to explicitly create attributes for each table. In this scenario, you
pass the table OIDs when you make each function call in the Netcool/Impact
policy.

7. If you want the DSA to retrieve table data from the agent using the SNMP
GETBULK command instead of an SNMP GET, select Get Bulk.

Chapter 11. Working with the SNMP DSA 111

The GETBULK command retrieves table data using a continuous GETNEXT
command. This option is suitable for retrieving data from very large tables.

8. If you have selected Get Bulk, you can control the number of variables in the
table for which the GETNEXT operation is performed using the specified
Non-Repeaters and Max Repetitions values.
The Non-Repeaters value specifies the first number of non-repeating variables
and Max Repetitions specifies the number of repetitions for each of the
remaining variables in the operation.

9. Click Save.

Editing SNMP data types
You can edit the configuration for a data type after you create it. To edit an SNMP
data types:

Procedure
1. Log in to the GUI using a web browser.
2. Click the name of the data type in the Data Types tab.

The Edit Data Type window opens.
3. Set the configuration properties for the data type as described in the previous

sections.
4. Click OK.

Results

Any changes to the configuration take effect immediately after you finish editing
the data type. There is no need to restart the Impact Server after making a change.

Deleting SNMP data types
About this task

To delete an SNMP data type:

Procedure
1. Log in to the Netcool/Impact GUI using a web browser.
2. In the Data Types tab, click the Delete Data Type button next to the name of

the data type you want to delete.

SNMP policies
You can perform the following tasks related to the SNMP DSA in a policy:
v Set packed OID data on SNMP agents using standard data-handling functions
v Set packed OID data on SNMP agents using SNMP functions
v Set table data on SNMP agents using standard data-handling functions
v Set table data on SNMP agents using SNMP functions
v Retrieve packed OID data on SNMP agents using standard data-handling

functions
v Retrieve packed OID data on SNMP agents using SNMP functions
v Send SNMP traps and notifications

112 Netcool/Impact: DSA Reference Guide

Setting packed OID data with standard data-handling
functions

About this task

You can use the standard data-handling function AddDataItem to set the value of a
single variable managed by an agent or to set the value of multiple variables.

Setting the value of a single variable
To set the value of a single variable, you create a context, and populate its Oid and
Value member variables. You can also populate optional HostId and Port members
variables. After you populate the context variables, you call AddDataItem and pass
the name of an SNMP data type and the context as runtime parameters. If you
specified values for the HostId and Port variables in the context, these override the
host and port information as defined in the data type.

To create a context, you call the NewObject function as shown in the following
example.
// Call the NewObject function

MyContext = NewObject();

After you create the context, you can set the Oid and Value variables, as shown in
the following example. All member variables of the context must be set as strings.
// Populate the context variables

MyContext.Oid = ".1.3.6.1.2.1.1.4.0";
MyContext.Value = "MyValue";

Oid and Value represent the OID of the variable managed by the agent and its
corresponding value.

After you populate the context variables, you can call AddDataItem and pass the
name of an SNMP data type and the context as runtime parameters, as shown in
the following example.
// Call AddDataItem and pass the name of an SNMP data type and the context

AddDataItem("MySnmpType", MyContext);

In this example, the host name, and port where the agent is located is specified by
the MySnmpType data type.

If the DSA is unable to successfully send the data to the agent, it stores an error
message in the policy-level variable ErrorString. The following example shows
how to print the error message to the policy log.
// Print any error message to the policy log

Log("Errors: " + ErrorString);

The following example shows how to set the value of a variable managed by an
agent, where the host name and port are specified by the MySnmpType data type. In
this example, the variable OID is .1.3.6.1.2.1.1.4.0 and the value is MyValue.
// Create a new context with the NewObject function

MyContext = NewObject();

// Populate the context variables

Chapter 11. Working with the SNMP DSA 113

MyContext.Oid = ".1.3.6.1.2.1.1.4.0";
MyContext.Value = "MyValue";

// Call AddDataItem and pass the name of an SNMP data type and the context

AddDataItem("MySnmpType", MyContext);

// Print any error message to the policy log

Log("Errors: " + ErrorString);

The following example shows how to set the value of a variable managed by an
agent, where the host name and port specified by the data type are overridden by
context variables set in the policy. In this example, the host is 192.168.1.1 and the
port is 161.
// Create a new context with the NewObject function

MyContext = NewObject();

// Populate the context variables

MyContext.Oid = ".1.3.6.1.2.1.1.4.0";
MyContext.Value = "MyValue";
MyContext.HostId = "192.168.1.1";
MyContext.Port = "161";

// Call AddDataItem and pass the name of an SNMP data type and the context

AddDataItem("MySnmpType", MyContext);

// Print any error message to the policy log

Log("Errors: " + ErrorString);

Setting the value of multiple variables
To set the value of multiple variables, you create a context and populate member
variables that correspond to the attributes you configured when you created the
corresponding SNMP data type. You can also populate optional HostId and Port
members variables.

After you populate the context variables, you call AddDataItem and pass the name
of the SNMP data type and the context as runtime parameters. If you specified
values for the HostId and Port variables in the context, these override the host and
port information as defined in the data type.

To create a context, you call the NewObject function as shown in the following
example.
// Call the NewObject function

MyContext = NewObject();

After you create the context, you can set the member variables, and the optional
variables, as shown in the following example. All member variables of the context
must be set as strings.
// Populate the context variables

MyContext.SysLocation = "New York";
MyContext.SysName = "SYS01";

Here, SysLocation, and SysName are attributes that you defined in the configuration
for the corresponding SNMP DSA data source.

114 Netcool/Impact: DSA Reference Guide

After you populate the context variables, you can call AddDataItem and pass the
name of an SNMP data type and the context as runtime parameters, as shown in
the following example.
// Call AddDataItem and pass the name of an SNMP data type and the context

AddDataItem("MySnmpType", MyContext);

In this example, the host name, and port where the agent is located is specified in
the data type configuration.

If the DSA is unable to successfully send the data to the agent, it stores an error
message in the policy-level variable ErrorString. The following example shows
how to print the error message to the policy log.
// Print any error message to the policy log

Log("Errors: " + ErrorString);

The following example shows how to set the value of variables managed by an
agent, where the host name and port is specified by the MySnmpType data type.
// Create a new context with the NewObject function

MyContext = NewObject();

// Populate the context variables

MyContext.SysLocation = "New York";
MyContext.SysName = "SYS01";

// Call AddDataItem and pass the name of an SNMP data type and the context

AddDataItem("MySnmpType", MyContext);

// Print any error message to the policy log

Log("Errors: " + ErrorString);

The following example shows how to set the value of a variable managed by an
agent, where the host name and port specified by the data type are overridden by
context variables set in the policy. In this example, the host is 192.168.1.1 and the
port is 161.
// Create a new context with the NewObject function

MyContext = NewObject();

// Populate the context variables

MyContext.SysLocation = "New York";
MyContext.SysName = "SYS01";
MyContext.HostId = "192.168.1.1";
MyContext.Port = "161";

// Call AddDataItem and pass the name of an SNMP data type and the context

AddDataItem("MySnmpType", MyContext);

// Print any error message to the policy log

Log("Errors: " + ErrorString);

Chapter 11. Working with the SNMP DSA 115

Setting packed OID data with SNMP functions
Procedure

You can use the SNMP function SnmpSetAction to set the value of a single or
multiple variables managed by an agent.
When you call SnmpSetAction, you pass an SNMP data type, the host name and
port of the agent, an array of OIDs, and the array of values that you want to set. If
you are using SNMP v3, you can also specify the information required to
authenticate as an SNMP user.
For more information about SnmpSetAction, see “SnmpSetAction” on page 128.

Example

The following example shows how to set SNMP variables by calling SnmpSetAction
and passing the name of an SNMP data type, an array of OIDs, and an array of
values as runtime parameters. In this example, the SNMP data type is named
SNMP_PACKED.
// Call SnmpSetAction and pass the name of the SNMP data type that contains
// configuration information required to perform the SNMP SET

TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = {" .1.3.6.1.2.1.1.4.0", " .1.3.6.1.2.1.1.5.0"};
ValueList = {"Value_01", "Value_02"};

SnmpSetAction(TypeName, HostId, Port, VarIdList, ValueList, NULL, NULL, \
NULL, NULL, NULL, NULL, NULL, NULL, NULL);

For more examples, see “SnmpSetAction” on page 128.

Retrieving packed OID data from SNMP agents
About this task

Packed OID data types reference the OIDs of one or more variables managed by a
single agent. You use this category of data type when you want to access single
variables or sets of related variables.

You can retrieve packed OID data from SNMP agents using one of the following
functions:

Procedure
v Standard data-handling functions
v SNMP functions

Retrieving packed OID data with standard data-Handling
functions
You can use the standard data-handling function GetByFilter to retrieve packed
OID data managed by an agent.

To retrieve the packed OID data, you call GetByFilter and specify the name of an
SNMP data type as a runtime parameter. The data type configuration contains a
list of OIDs for the variables whose value you want to retrieve and attribute names
that you can use to reference the values. The data source associated with the data
type specifies the host name and port where the agent is located.

116 Netcool/Impact: DSA Reference Guide

The GetByFilter function returns an array of data items whose first element stores
a context where the member variables represent values retrieved from the agent.
You can reference the returned values using the attribute names that you defined
when you created the data type.

If the DSA is unable to successfully retrieve the data, it stores an error message in
a member variable on the context called ErrorString.

The following example shows how to call GetByFilter and specify the name of an
SNMP data type. You can set the Filter parameter to an empty string and
CountOnly to False.
// Call GetByFilter and pass the name of an SNMP data type

TypeName = "MySnmpType";
Filter = "";
CountOnly = False;

MySNMPValues = GetByFilter(TypeName, Filter, CountOnly);

The following example shows how to access values returned by the function. In
this example, MySnmpType defines attributes named HostId, SysContact, SysName,
and SysLocation.
// Access the member variables of the context returned by GetByFilter

Log("HostId: " + MySNMPValues[0].HostId);
Log("SysContact: " + MySNMPValues[0].SysContact);
Log("SysName: " + MySNMPValues[0].SysName);
Log("SysLocation: " + MySNMPValues[0].SysLocation);

The following example shows how to access an error message returned by the call
to GetByFilter.
Log("Errors: " + MySNMPValues[0].ErrorString);

The following complete example shows how to use GetByFilter and handle the
values it returns.
// Call GetByFilter and pass the name of an SNMP data type

TypeName = "MySnmpType";
Filter = "";
CountOnly = False;

MySNMPValues = GetByFilter(TypeName, Filter, CountOnly);

// Access the member variables of the context returned by GetByFilter

Log("HostId: " + MySNMPValues[0].HostId);
Log("SysContact: " + MySNMPValues[0].SysContact);
Log("SysName: " + MySNMPValues[0].SysName);
Log("SysLocation: " + MySNMPValues[0].SysLocation);

Log("Errors: " + MySNMPValues[0].ErrorString);

Retrieving packed OID data with SNMP functions
You can use the SNMP function SnmpGetAction to retrieve packed OID data
managed by an agent.

When you call SnmpGetAction, you pass an SNMP data type, the host name and
port of the agent, and other parameters. If you are using SNMP v3, you can also
specify the information required to authenticate as an SNMP user.

Chapter 11. Working with the SNMP DSA 117

For more information about SnmpGetAction, see “SnmpGetAction” on page 121.

The following example shows how to use SnmpGetAction. In this example, the
variable OIDs are specified by the SNMP_PACKED data type configuration.
// Call SnmpGetAction and pass the name of the SNMP data type that contains
// configuration information required to perform the SNMP GET

TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";

SnmpGetAction(TypeName, HostId, Port, NULL, NULL, NULL, NULL, NULL, NULL, NULL, \
NULL, NULL, NULL);

// Print the results of the SNMP GET to the policy log

Count = 0;

While (Count < Length(ValueList)) {
Log(ValueList[Index]);
Count = Count + 1;

}

Traversing SNMP trees
You can use the SnmpGetNextAction function to retrieve the value of the next
SNMP variables in the variable tree from an agent. This function is useful in
situations where you want to traverse an entire tree or in situations where you do
not know the OID of subsequent variables in a tree that you want to retrieve.

When you call SnmpGetNextAction, you pass an SNMP data type and the host
name and port where the agent is located. If you are using SNMP v3, you can also
specify the information required to authenticate as an SNMP user. You can also
optionally pass a list of OIDs and other information needed to retrieve the data.

For more information about the SnmpGetNextAction function, see
“SnmpGetNextAction” on page 125.

The following example shows how to use SnmpGetNextAction.
// Call SnmpGetNextAction and pass the name of the SNMP data type that contains
// configuration information required to perform the SNMP GETNEXT

TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";

SnmpGetNextAction(TypeName, HostId, Port, NULL, NULL, NULL, NULL, NULL, \
NULL, NULL, NULL, NULL, NULL);

// Print the results of the SNMP GETNEXT to the policy log

Count = 0;

While (Count < Length(ValueList)) {
Log(VarIdList + ": " + ValueList[Index]);
Count = Count + 1;

}

118 Netcool/Impact: DSA Reference Guide

Retrieving table data from SNMP agents
About this task

Table data types reference the OIDs of one or more tables managed by a single
agent. You use this category of data type when you want to access SNMP tables.

You can retrieve table data from SNMP agents using:

Procedure
v Standard data-handling functions
v SNMP functions

Retrieving table data with standard data-handling functions
You can use the standard data-handling function GetByFilter to retrieve table data
managed by an agent.

To retrieve the table data, you call GetByFilter and specify the name of an SNMP
data type as a runtime parameter. The data type configuration contains a list of
OIDs for the tables whose value you want to retrieve and attribute names that you
can use to reference the tables. The data source associated with the data type
specifies the host name and port where the agent is located.

The GetByFilter function returns an array of data items whose first element stores
a context where the member variables represent values retrieved from the agent.
You can reference the returned values using the attribute names that you defined
when you created the data type.

If the DSA is unable to successfully retrieve the data, it stores an error message in
a member variable on the context called ErrorString.

The following example shows how to call GetByFilter and specify the name of an
SNMP data type. You can set the Filter parameter to an empty string and
CountOnly to False.
// Call GetByFilter and pass the name of an SNMP data type

TypeName = "MySnmpType";
Filter = "";
CountOnly = False;

MySNMPValues = GetByFilter(TypeName, Filter, CountOnly);

The following example shows how to access values returned by the function. In
this example, MySnmpType defines attributes named HostId, SysContact, SysName,
and SysLocation.
// Access the member variables of the context returned by GetByFilter

Log("HostId: " + MySNMPValues[0].HostId);
Log("SysContact: " + MySNMPValues[0].SysContact);
Log("SysName: " + MySNMPValues[0].SysName);
Log("SysLocation: " + MySNMPValues[0].SysLocation);

The following example shows how to access an error message returned by the call
to GetByFilter.
Log("Errors: " + MySNMPValues[0].ErrorString);

Chapter 11. Working with the SNMP DSA 119

The following complete example shows how to use GetByFilter and handle the
values it returns.
// Call GetByFilter and pass the name of an SNMP data type

TypeName = "MySnmpType";
Filter = "";
CountOnly = False;

MySNMPValues = GetByFilter(TypeName, Filter, CountOnly);

// Access the member variables of the context returned by GetByFilter

Log("HostId: " + MySNMPValues[0].HostId);
Log("SysContact: " + MySNMPValues[0].SysContact);
Log("SysName: " + MySNMPValues[0].SysName);
Log("SysLocation: " + MySNMPValues[0].SysLocation);

Log("Errors: " + MySNMPValues[0].ErrorString);

Sending SNMP traps and notifications
About this task

You use the SnmpTrapAction function to send a trap (for SNMP v1) or a notification
(for SNMP v2) to an SNMP manager.

To send the trap or notification, you call the function and pass the host name and
port where the manager is located, a list of OIDs and corresponding values for the
trap, and other related information. If the trap or notification is not successful, the
function stores an error message in the policy-level ErrorString variable. You can
handle the contents of ErrorString in subsequent parts of the policy.

For more information about the SnmpTrapAction function, see “SnmpTrapAction”
on page 131.

Example

The following example shows how to send a trap using the SnmpTrapAction
function.
// Call SnmpTrapAction and pass the host name, port, OID list, OID values
// and other required parameters

HostId = "192.168.1.1";
Port = "162";
Version = "1";
Community = "public";

SysUpTime = "1001";

Enterprise = ".1.3.6.1.2.1.11";
GenericTrap = 3;
SpecificTrap = 0;

VarIdList = {".1.3.6.1.2.1.2.2.1.1.0", "sysDescr"};
ValueList = {"2", "My system"};

SnmpTrapAction(HostId, Port, VarIdList, ValueList, Community, Version, \
SysUpTime, Enterprise, GenericTrap, SpecificTrap, NULL);

// Print any errors to the policy log

Log("Error: " + ErrorList);

120 Netcool/Impact: DSA Reference Guide

The following example shows how to send a notification using the SnmpTrapAction
function. In this example, you set a value for the SnmpTrapOid parameter.
// Call SnmpTrapAction and pass the host name, port, OID list, OID values
// and other required parameters

HostId = "192.168.1.1";
Port = "162";
Version = "1";
Community = "public";

SysUpTime = "1001";

Enterprise = ".1.3.6.1.2.1.11";
GenericTrap = 3;
SpecificTrap = 0;

VarIdList = {".1.3.6.1.2.1.2.2.1.1.0", "sysDescr"};
ValueList = {"2", "My system"};

SnmpTrapOid = ".1.3.6.1.2.4.1.11";

SnmpTrapAction(HostId, Port, VarIdList, ValueList, Community, Version, \
SysUpTime, Enterprise, GenericTrap, SpecificTrap, SnmpTrapOid);

// Print any errors to the policy log

Log("Error: " + ErrorList);

SNMP functions
The SNMP DSA supports a special set of functions that you can use to send data
to and retrieve data from SNMP agents. You can also use the SNMP functions to
send SNMP traps and notifications to SNMP managers.

The SNMP DSA supports the following functions:
v SnmpGetAction

v SnmpGetNextAction

v SnmpSetAction

v SnmpTrapAction

The SNMP DSA also supports the use of standard data-handling functions as
described in “SNMP policies” on page 112.

SnmpGetAction
The SnmpGetAction function retrieves a set of SNMP variables from the specified
agent

The values are then stored in a variable named ValueList and any error messages
in a variable named ErrorString. This function operates by sending an SNMP GET
command to the specified agent.

When you call SnmpGetAction, you pass an SNMP data type and, for SNMP v3,
any authorization parameters that are required. To override the agent and variable
information specified in the SNMP data type, you can also optionally pass a host
name, a port number, a list of OIDs, and other information needed to retrieve the
data.

Chapter 11. Working with the SNMP DSA 121

Syntax

The following is the syntax for SnmpGetAction:
SnmpGetAction(TypeName, [HostId], [Port], [VarIdList], [Community], [Timeout],
[Version], [UserId], [AuthProtocol], [AuthPassword], [PrivPassword], [ContextId],
[ContextName])

Parameters

The SnmpGetAction function has the following parameters.

Table 40. SnmpGetAction function parameters

Parameter Format Description

TypeName String Name of the SNMP data type that specifies the host name,
port, OIDs, and other information needed to retrieve the
SNMP data.

HostId String Optional. Host name or IP address of the system where the
SNMP agent is running. Overrides value specified in the
SNMP data type.

Port Integer Optional. Port where the SNMP agent is running. Overrides
value specified in the SNMP data type.

VarIdList Array Optional. Array of strings containing the OIDs of SNMP
variables to retrieve from the agent. Overrides values
specified in the SNMP data type.

Community String Optional. Name of the SNMP write community string.
Default is public.

Timeout Integer Optional. Number of seconds to wait for a response from the
SNMP agent before timing out.

Version Integer Optional. SNMP version number. Possible values are 1, 2
and 3. Default is 1.

UserId String Required for SNMP v3 authentication. If using SNMP v1 or
v2, or using v3 without authentication, pass a null value for
this parameter.

AuthProtocol String Optional. For use with SNMP v3 authentication only.
Possible values are. MD5_AUTH, NO_AUTH, SHA_AUTH. NO_AUTH is
the default.

AuthPassword String Optional. For use with SNMP v3 authentication only.
Authentication password associated with the specified
SNMP User ID.

PrivPassword String Optional. For use with SNMP v3 authentication only. Privacy
password associated with the specified SNMP User ID.

ContextId String Optional. For use with SNMP v3 authentication only.
Authentication context ID.

ContextName String Optional. For use with SNMP v3 authentication only.
Authentication context name.

Return Values

When you call SnmpGetAction, it sets the following variables in the policy context:
ValueList and ErrorString.

122 Netcool/Impact: DSA Reference Guide

The ValueList variable is an array of strings, each of which stores the value of one
variable retrieved from the SNMP agent. The strings in the array are assigned in
the order that the variable OIDs are specified in the SNMP data type or the
VarIdList parameter.

ErrorString is a string variable that contains any error messages generated while
attempting to perform the SNMP GET command.

Example 1

The following example shows how to retrieve a set of SNMP variables by calling
SnmpGetAction and passing the name of an SNMP data type as a runtime
parameter. In this example, the SNMP data type is named SNMP_PACKED. The data
type configuration specifies the host name and port where the SNMP agent is
running and the OIDs of the variables you want to retrieve.
// Call SnmpGetAction and pass the name of the SNMP data type that contains
// configuration information required to perform the SNMP GET

TypeName = "SNMP_PACKED";

SnmpGetAction(TypeName, "192.168.1.1", 161, null, null, null, \
null, null, null, null, null, null, null);

// Print the results of the SNMP GET to the policy log

Count = 0;

While (Count < Length(ValueList)) {
Log(ValueList[Index]);
Count = Count + 1;
}

Example 2

The following example shows how to retrieve a set of SNMP variables by calling
SnmpGetAction and explicitly overriding the default host name, port, and other
configuration values set in the SNMP data type.

Example 2 using IPL.
// Call SnmpGetAction and pass the name of the SNMP data type that contains
// configuration information required to perform the SNMP GET

TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = {".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"};
Community = "private";
Timeout = 15;

SnmpGetAction(TypeName, HostId, Port, VarIdList, Community, \
Timeout, null, null, null, null, null, null,null);

// Print the results of the SNMP GET to the policy log

Count = 0;

While (Count < Length(ValueList)) {
Log(ValueList[Index]);
Count = Count + 1;
}

Chapter 11. Working with the SNMP DSA 123

Example 2 using JavaScript.
// Call SnmpGetAction and pass the name of the SNMP data type that contains
// configuration information required to perform the SNMP GET
TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = [".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"];
Community = "private";
Timeout = 15;
SnmpGetAction(TypeName, HostId, Port, VarIdList, Community, \
Timeout, null, null, null, null, null, null,null);
// Print the results of the SNMP GET to the policy log
Count = 0;
While (Count < Length(ValueList)) {
Log(ValueList[Index]);
Count = Count + 1;
}

Example 3

The following example shows how to retrieve a set of SNMP variables using
SNMP v3 authentication.

Example 3 using IPL.
// Call SnmpGetAction and pass the name of the SNMP data type that contains
// configuration information required to perform the SNMP GET

TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = {".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"};
Community = "private";
Timeout = 15;
Version = 3;
UserId = "snmpusr";
AuthProtocol = "MD5_AUTH";
AuthPassword = "snmppwd";
ContextId = "ctx";

SnmpGetAction(TypeName, HostId, Port, VarIdList, Community, \
Timeout, Version, UserId, AuthProtocol, AuthPassword, null, ContextId, null);

// Print the results of the SNMP GET to the policy log

Count = 0;

While (Count < Length(ValueList)) {
Log(ValueList[Index]);
Count = Count + 1;
}

Example 3 using JavaScript.
// Call SnmpGetAction and pass the name of the SNMP data type that contains
// configuration information required to perform the SNMP GET
TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = [".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"];
Community = "private";
Timeout = 15;
Version = 3;
UserId = "snmpusr";
AuthProtocol = "MD5_AUTH";
AuthPassword = "snmppwd";

124 Netcool/Impact: DSA Reference Guide

ContextId = "ctx";
SnmpGetAction(TypeName, HostId, Port, VarIdList, Community, \
Timeout, Version, UserId, AuthProtocol, AuthPassword, null, ContextId, null);
// Print the results of the SNMP GET to the policy log
Count = 0;
While (Count < Length(ValueList)) {
Log(ValueList[Index]);
Count = Count + 1;
}

SnmpGetNextAction
The SnmpGetNextAction function retrieves the next SNMP variables in the variable
tree from the specified agent.

It stores the resulting OIDs in a variable named VarIdList, the resulting values in
a variable named ValueList, and any error messages in a variable named
ErrorString. The function sends a series of SNMP GETNEXT commands to the
specified agent where each command specifies a single OID for which the next
variable in the tree is to be retrieved.

When you call SnmpGetNextAction, you pass an SNMP data type and, for SNMP
v3, any authorization parameters that are required. To override the agent and
variable information specified in the SNMP data type, you can also optionally pass
a host name, a port number, a list of OIDs, and other information needed to
retrieve the data.

Syntax

The following is the syntax for SnmpGetNextAction:
SnmpGetNextAction(TypeName, [HostId], [Port], [VarIdList], [Community],

[Timeout], [Version], [UserId], [AuthProtocol], [AuthPassword],
[PrivPassword], [ContextId], [ContextName])

Parameters

The SnmpGetNextAction function has the following parameters.

Table 41. SnmpGetNextAction function parameters

Parameter Format Description

TypeName String Name of the SNMP data type that specifies the host name,
port, OIDs, and other information needed to retrieve the
SNMP data.

HostId String Optional. Host name or IP address of the system where
the SNMP agent is running. Overrides value specified in
the SNMP data type.

Port Integer Optional. Port where the SNMP agent is running.
Overrides value specified in the SNMP data type.

VarIdList Array Optional. Array of strings containing the OIDs of SNMP
variables to retrieve from the agent. Overrides values
specified in the SNMP data type.

Community String Optional. Name of the SNMP write community string.
Default is public.

Timeout Integer Optional. Number of seconds to wait for a response from
the SNMP agent before timing out.

Chapter 11. Working with the SNMP DSA 125

Table 41. SnmpGetNextAction function parameters (continued)

Parameter Format Description

Version Integer Optional. SNMP version number. Possible values are 1, 2
and 3. Default is 1.

UserId String Required for SNMP v3 authentication. If using SNMP v1
or v2, or v3 without authentication, pass a null value for
this parameter.

AuthProtocol String Optional. For use with SNMP v3 authentication only.
Possible values are. MD5_AUTH, NO_AUTH, SHA_AUTH. NO_AUTH
is the default.

AuthPassword String Optional. For use with SNMP v3 authentication only.
Authentication password associated with the specified
SNMP User ID.

PrivPassword String Optional. For use with SNMP v3 authentication only.
Privacy password associated with the specified SNMP
User ID.

ContextId String Optional. For use with SNMP v3 authentication only.
Authentication context ID.

ContextName String Optional. For use with SNMP v3 authentication only.
Authentication context name.

Example 1

The following example shows how to retrieve SNMP variables in the variable tree
by calling SnmpGetNextAction and passing the name of an SNMP data type as a
runtime parameter. In this example, the SNMP data type is named SNMP_PACKED.
The data type configuration specifies the host name and port where the SNMP
agent is running and the OIDs of the variables whose subsequent values in the tree
you want to retrieve.
// Call SnmpGetNextAction and pass the name of the SNMP
// data type that contains configuration information required
// to perform the SNMP GETNEXT

TypeName = "SNMP_PACKED";

SnmpGetNextAction(TypeName, "192.168.1.1", 161, null, null, \
null, null, null, null, null, null, null, null);

// Print the results of the SNMP GETNEXT to the policy log

Count = 0;

While (Count < Length(ValueList)) {
Log(VarIdList + ": " + ValueList[Index]);
Count = Count + 1;
}

Example 2

The following example shows how to retrieve SNMP variables in the variable tree
by calling SnmpGetNextAction and explicitly overriding the default host name, port,
and other configuration values set in the SNMP data type.

Example 2 using IPL.

126 Netcool/Impact: DSA Reference Guide

// Call SnmpGetNextAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP GETNEXT

TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = {".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"};
Community = "private";
Timeout = 15;

SnmpGetNextAction(TypeName, HostId, Port, VarIdList, Community, \
Timeout, null, null, null, null, null, null, null);

// Print the results of the SNMP GETNEXT to the policy log

Count = 0;

While (Count < Length(ValueList)) {
Log(VarIdList + ": " + ValueList[Index]);
Count = Count + 1;
}

Example 2 using JavaScript.
// Call SnmpGetNextAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP GETNEXT
TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = [".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"];
Community = "private";
Timeout = 15;
SnmpGetNextAction(TypeName, HostId, Port, VarIdList, Community, \
Timeout, null, null, null, null, null, null, null);
// Print the results of the SNMP GETNEXT to the policy log
Count = 0;
While (Count < Length(ValueList)) {
Log(VarIdList + ": " + ValueList[Index]);
Count = Count + 1;
}

Example 3

The following example shows how to retrieve subsequent SNMP variables in the
variable tree using SNMP v3 authentication.

Example 3 using IPL.
// Call SnmpGetNextAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP GETNEXT

TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = {".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"};
Community = "private";
Timeout = 15;
Version = 3;
UserId = "snmpusr";
AuthProtocol = "MD5_AUTH";
AuthPassword = "snmppwd";
ContextId = "ctx";

SnmpGetNextAction(TypeName, HostId, Port, VarIdList, Community, \

Chapter 11. Working with the SNMP DSA 127

Timeout, Version, UserId, AuthProtocol, AuthPassword, null, \
ContextId, null);

// Print the results of the SNMP GET to the policy log

Count = 0;

While (Count < Length(ValueList)) {
Log(VarIdList + ": " + ValueList[Index]);
Count = Count + 1;
}

Example 3 using JavaScript.
// Call SnmpGetNextAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP GETNEXT
TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = [".1.3.6.1.2.1.1.5.0", ".1.3.6.1.2.1.1.6.0"];
Community = "private";
Timeout = 15;
Version = 3;
UserId = "snmpusr";
AuthProtocol = "MD5_AUTH";
AuthPassword = "snmppwd";
ContextId = "ctx";
SnmpGetNextAction(TypeName, HostId, Port, VarIdList, Community, \
Timeout, Version, UserId, AuthProtocol, AuthPassword, null, \
ContextId, null);
// Print the results of the SNMP GET to the policy log
Count = 0;
While (Count < Length(ValueList)) {
Log(VarIdList + ": " + ValueList[Index]);
Count = Count + 1;
}

SnmpSetAction
The SnmpSetAction function sets variable values on the specified SNMP agent.

If the attempt to set variable fails, it stores the resulting error message in a variable
named ErrorString. This function operates by sending an SNMP SET command to
the specified agent.

When you call SnmpSetAction, you pass an SNMP data type, the host name, and
port of the agent, an array of OIDs, and the array of values that you want to set. If
you are using SNMP v3, you can also include information required to authenticate
as an SNMP user.

Syntax

The following is the syntax for SnmpSetAction:
SnmpSetAction(TypeName, [HostId], [Port], [VarIdList], \
ValueList, [Community], [Timeout], [Version], [UserId], [AuthProtocol],\
[AuthPassword], [PrivPassword], [ContextId], [ContextName])

128 Netcool/Impact: DSA Reference Guide

Parameters

The SnmpSetAction function has the following parameters.

Table 42. SnmpSetAction function parameters

Parameter Format Description

TypeName String Name of the SNMP data type that specifies the host
name, port, OIDs, and other information needed to
set the SNMP data.

HostId String Optional. Host name or IP address of the system
where the SNMP agent is running. Overrides value
specified in the SNMP data type.

Port Integer Optional. Port where the SNMP agent is running.
Overrides value specified in the SNMP data type.

VarIdList Array Array of strings containing the OIDs of SNMP
variables to set on the agent. Overrides values
specified in the SNMP data type.

ValueList Array Array of strings containing the values you want to
set. You must specify these values in the same order
that the OIDs appear either in the SNMP data type
or in the VarIdList variable.

Community String Optional. Name of the SNMP write community
string. Default is public.

Timeout Integer Optional. Number of seconds to wait for a response
from the SNMP agent before timing out.

Version Integer Optional. SNMP version number. Possible values are
1, 2 and 3. Default is 1.

UserId String Required for SNMP v3 authentication. If using SNMP
v1 or v2, or using v3 without authentication, pass a
null value for this parameter.

AuthProtocol String Optional. For use with SNMP v3 authentication only.
Possible values are. MD5_AUTH, NO_AUTH, SHA_AUTH.
NO_AUTH is the default.

AuthPassword String Optional. For use with SNMP v3 authentication only.
Authentication password associated with the
specified SNMP User ID.

PrivPassword String Optional. For use with SNMP v3 authentication only.
Privacy password associated with the specified
SNMP User ID.

ContextId String Optional. For use with SNMP v3 authentication only.
Authentication context ID.

ContextName String Optional. For use with SNMP v3 authentication only.
Authentication context name.

Example 1

The following example shows how to set SNMP variables by calling SnmpSetAction
and passing the name of an SNMP data type, an array of OIDs, and an array of
values as runtime parameters. In this example, the SNMP data type is named
SNMP_PACKED.

Example 1 using IPL.

Chapter 11. Working with the SNMP DSA 129

// Call SnmpSetAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP SET

TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = {" .1.3.6.1.2.1.1.4.0", " .1.3.6.1.2.1.1.5.0"};
ValueList = {"Value_01", "Value_02"};

SnmpSetAction(TypeName, HostId, Port, VarIdList, ValueList, \
null, null, null, null, null, null, null, null, null);

Example 1 using JavaScript.
// Call SnmpSetAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP SET
TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = [" .1.3.6.1.2.1.1.4.0", " .1.3.6.1.2.1.1.5.0"];
ValueList = ["Value_01", "Value_02"];
SnmpSetAction(TypeName, HostId, Port, VarIdList, ValueList, \
null, null, null, null, null, null, null, null, null);

Example 2

The following example shows how to set SNMP variables using SNMP v3
authentication.

Example 2 using IPL.
// Call SnmpSetAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP SET

TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = { ".1.3.6.1.2.1.1.4.0", " .1.3.6.1.2.1.1.5.0"};
ValueList = {"Value_01", "Value_02"};
Community = "private";
Timeout = 15;
Version = 3;
UserId = "snmpusr";
AuthProtocol = "MD5_AUTH";
AuthPassword = "snmppwd";
ContextId = "ctx";

SnmpSetAction(TypeName, HostId, Port, VarIdList, ValueList, \
Community, Timeout, Version, UserId, AuthProtocol, \
AuthPassword, null, ContextId, null);

Example 2 using JavaScript.
// Call SnmpSetAction and pass the name of the
// SNMP data type that contains configuration information
// required to perform the SNMP SET
TypeName = "SNMP_PACKED";
HostId = "192.168.1.1";
Port = "161";
VarIdList = [".1.3.6.1.2.1.1.4.0", " .1.3.6.1.2.1.1.5.0"];
ValueList = ["Value_01", "Value_02"];
Community = "private";
Timeout = 15;
Version = 3;

130 Netcool/Impact: DSA Reference Guide

UserId = "snmpusr";
AuthProtocol = "MD5_AUTH";
AuthPassword = "snmppwd";
ContextId = "ctx";
SnmpSetAction(TypeName, HostId, Port, VarIdList, ValueList, \
Community, Timeout, Version, UserId, AuthProtocol, \
AuthPassword, null, ContextId, null);

SnmpTrapAction
The SnmpTrapAction function sends a trap (for SNMP v1) or a notification (for
SNMP v2) to an SNMP manager.

Sending traps or notifications is not supported for SNMP v3.

Syntax

The following is the syntax for SnmpTrapAction:
SnmpTrapAction(HostId, Port, [VarIdList], [ValueList], \
[Community], [Timeout], [Version], [SysUpTime], [Enterprise], \
[GenericTrap], [SpecificTrap], [SnmpTrapOid])

Parameters

The SnmpTrapAction function has the following parameters.

Table 43. SnmpTrapAction function parameters

Parameter Format Description

HostId String Host name or IP address of the system where the
SNMP manager is running.

Port Integer Port where the SNMP manager is running.

VarIdList Array Optional. Array of strings containing the OIDs of
SNMP variables to send to the manager.

ValueList Array Optional. Array of strings containing the values you
want to send to the manager. You must specify these
values in the same order that the OIDs appear in
the VarIdList variable.

Community String Optional. Name of the SNMP write community
string. Default is public.

Timeout Integer Optional. Number of seconds to wait for a response
from the SNMP agent before timing out.

Version Integer Optional. SNMP version number. Possible values are
1 and 2. Default is 1.

SysUpTime Integer Optional. Number of milliseconds since the system
started. Default is the current system time in
milliseconds.

Enterprise String Required for SNMP v1 only. Enterprise ID.

GenericTrap String Required for SNMP v1 only. Generic trap ID.

SpecificTrap String Required for SNMP v1 only. Specific trap ID.

SnmpTrapOid String Optional for SNMP v1. Required for SNMP v2.
SNMP trap OID.

Chapter 11. Working with the SNMP DSA 131

Example 1

The following example shows how to send an SNMP v1 trap to a manager using
SnmpTrapAction.

Example 1 using IPL.
// Call SnmpTrapAction

HostId = "localhost";
Port = 162;
Version = 1;
Community = "public";
SysUpTime = 1001;
Enterprise = ".1.3.6.1.2.1.11";
GenericTrap = 3;
SpecificTrap = 0;
VarIdList = {".1.3.6.1.2.1.2.2.1.1.0", "sysDescr"};
ValueList = {"2", "My system"};

SnmpTrapAction(HostId, Port, VarIdList, ValueList, \
Community, 15, Version, SysUpTime, Enterprise, GenericTrap, \
SpecificTrap, null);

Example 1 using JavaScript.
// Call SnmpTrapAction
HostId = "localhost";
Port = 162;
Version = 1;
Community = "public";
SysUpTime = 1001;
Enterprise = ".1.3.6.1.2.1.11";
GenericTrap = 3;
SpecificTrap = 0;
VarIdList = [".1.3.6.1.2.1.2.2.1.1.0", "sysDescr"];
ValueList = ["2", "My system"];
SnmpTrapAction(HostId, Port, VarIdList, ValueList, \
Community, 15, Version, SysUpTime, Enterprise, GenericTrap, \
SpecificTrap, null);

Example 2

The following example shows how to send an SNMP v2 notification to a manager
using SnmpTrapAction. SNMP v2 requires that you specify an SNMP trap OID
when you call this function.

Example 2 using IPL.
// Call SnmpTrapAction

HostId = "localhost";
Port = 162;
Version = 1;
Community = "public";
SysUpTime = 1001;
Enterprise = ".1.3.6.1.2.1.11";
GenericTrap = 3;
SpecificTrap = 0;
VarIdList = {".1.3.6.1.2.1.2.2.1.1.0", "sysDescr"};
ValueList = {"2", "My system"};
SnmpTrapOid = ".1.3.6.1.2.4.1.11";

SnmpTrapAction(HostId, Port, VarIdList, ValueList, \
Community, 15, Version, SysUpTime, Enterprise, \
GenericTrap, SpecificTrap, SnmpTrapOid);

132 Netcool/Impact: DSA Reference Guide

Example 2 using JavaScript.
// Call SnmpTrapAction
HostId = "localhost";
Port = 162;
Version = 1;
Community = "public";
SysUpTime = 1001;
Enterprise = ".1.3.6.1.2.1.11";
GenericTrap = 3;
SpecificTrap = 0;
VarIdList = [".1.3.6.1.2.1.2.2.1.1.0", "sysDescr"];
ValueList = ["2", "My system"];
SnmpTrapOid = ".1.3.6.1.2.4.1.11";
SnmpTrapAction(HostId, Port, VarIdList, ValueList, \
Community, 15, Version, SysUpTime, Enterprise, \
GenericTrap, SpecificTrap, SnmpTrapOid);

Chapter 11. Working with the SNMP DSA 133

134 Netcool/Impact: DSA Reference Guide

Chapter 12. Working with the ITNM DSA

The ITNM DSA is a Direct Mode, bi-directional DSA that is used to send queries to
the Netcool/Impact ITNM application and get the results of those queries.

ITNM DSA overview
The ITNM DSA is a Direct Mode, bi-directional DSA that is used to send queries to
the ITNM application and get the results of those queries.

After you set up Netcool/Impact and install the DSA, you can read the data in a
policy using the GetByFilter function. The DSA can also receive asynchronous
messages from ITNM regarding alerts.

The ITNM DSA requires ITNM version 3.8 or higher running on AIX®, Linux,
Windows, or Solaris. For more information about ITNM hardware and software
requirements, see the Tivoli Network Manager IP Edition Version 3.8 and 3.9
Information Center at http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/
topic/com.ibm.tivoli.namnmip.doc/welcome_nmip.htm.

Setting up the DSA
The drivers required to connect Netcool/Impact to ITNM version 3.8 and 3.9 are
available in NCHOME/impact/integrations/itnm in your Netcool/Impact installation.
v To connect to ITNM 3.8 use, ncp_j_api-3.8.0.50.jar.
v To connect to ITNM 3.9 use, ncp_j_api-3.9.0.32.jar.

For the version of ITNM you want to receive events from, complete the following
steps:
1. Copy the appropriate jar file from NCHOME/impact/integrations/itnm and place

it in NCHOME/impact/dsalib folder.
2. Restart the Netcool/Impact server.
3. If you are running in a clustered mode, repeat this step for each server in the

cluster.

To set up the ITNM DSA, complete following tasks:
1. Edit the precisiondsa.properties file. For more information about this task,

see “Editing the DSA properties file” on page 136.
2. Configure the ITNM Event Listenerservice for the DSA (optional). For more

information about this task, see “Running the ITNM event listener service for
the DSA” on page 136.

3. If you plan to receive asynchronous events from ITNM, start the ITNM Event
Listener Service.

A preconfigured data type, data source, and two sample policies are included in
Netcool/Impact.

© Copyright IBM Corp. 2006, 2014 135

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.tivoli.namnmip.doc/welcome_nmip.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.tivoli.namnmip.doc/welcome_nmip.htm

Editing the DSA properties file
Procedure
1. After you set up the DSA and restarted the server, you must edit the

precisiondsa.properties file, which you can find in the directory
$NCHOME/impact/dsa/precisiondsa.

2. The following image shows an example of the ITNM DSA properties file. Edit
the information as required to connect to the ITNM Listener Daemon, following
the instructions in the file.

Running the ITNM event listener service for the DSA
The ITNM event listener service is preconfigured in Netcool/Impact. When the
INTNM DSA is set up you can log in to Tivoli Netcool/Impact and, run the
ITNMEventListener service available in theServices node for the ITNM project.
This step is optional. It is only necessary to set up an event listener service if you
want to listen for events asynchronously from IBM Tivoli Network Manager.

About this task

The ITNMEvent Listener service monitors a non-ObjectServer event source for
events. They typically work with DSAs that allow bidirectional communication
with a data source.

To run the ITNMEvent Listener service:

136 Netcool/Impact: DSA Reference Guide

Procedure
1. From the Project selection list, select the ITNM project.
2. Select Event Automation > Services.
3. The ITNMEvent Listener service is displayed.
4. Enter the required information in new the Event Listener configuration

window.
5. If you want to view the preconfigured settings, right click the service and click

Edit.
v Listener Filter Leave this field blank
v Policy To Execute shows the ITNMSampleListenerPolicy that runs when an

event is received from the IBM Tivoli Network Manager application.
v Direct Mode Class Name this field is prepopulated

con.micromuse.dsa.precisiondsa.
PrecisionEventFeedSource

v Direct Mode Source Name this field is prepopulated with a unique name
that identifies the data source, for example, ITNMServer

6. Close the ITNMEvent Listener service tab.
7. To run the service, in the Services tab, select the ITNMEvent Listener service

and click the Start Service icon to receive events from IBM Tivoli Network
Manager. For information about IBM Tivoli Network Manager, see the IBM
Tivoli Network Manager documentation available from the following link,
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/
com.ibm.tivoli.namnmip.doc/welcome_nmip.htm.

ITNM DSA data type
The ITNM data type is the only one that works with the ITNM DSA.

You cannot rename an ITNM data type.

When the DSA queries the ITNM database, the records are returned as data items
of the ITNM data type. Each field in the records is turned into an attribute of the
corresponding data item.

For example, a record can contain fields such as:
v ObjectId

v EntityName

v Address

v Description

v ExtraInfo

To access the values, you can directly access the attributes just like any other data
items using the following command:
log("Description is " + DataItem.Description);

This command prints out the Description field string that was on the ITNM
record returned by the query.

ExtraInfo field
The ExtraInfo field is a special case.

Chapter 12. Working with the ITNM DSA 137

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.tivoli.namnmip.doc/welcome_nmip.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.tivoli.namnmip.doc/welcome_nmip.htm

All the other fields contain data which can be printed directly. The ExtraInfo field
has a hierarchy and has subfields of its own, such as m_BaseName and DNSName. If
you tried to print out the contents of the m_BaseName field as follows:
log("ExtraInfo->m_BaseName is " + DataItem.ExtraInfo.m_BaseName);

it will not work because DataItem.ExtraInfo is a string itself, not an DataItem that
can be dereferenced. To get the value of m_BaseName, you must perform a more
specific query as follows:
select ExtraInfo->m_BaseName,ExtraInfo->DNSName from master.entityByName;

This query selects the embedded fields from the ExtraInfo fields, and puts their
values on the data item that is returned from the query.

Writing policies using the ITNM DSA
The ITNM DSA supports only the GetByFilter function. This function has three
components for the filter argument for this DSA, as described in Table 44.

Table 44. ITNM DSA Filter Arguments

Argument Description

Subject This argument specifies on what service the OQL query has been sent
to.

For MODEL, the value is RIVERSOFT.3.0.MODEL.QUERY.

Query This is the actual query to be sent to the subject described in the
previous row. If this component exists, than all the records from the
subject will be retrieved.

Make sure that the OQL query contains NO " ' " characters.

Timeout This is the timeout value for getting the results back. It uses the value
in the precisiondsa properties file if you do not specify the timeout
value in the filter.

GetByFilter
The GetByFilter function retrieves data items from a data type using a filter as the
query condition.

To retrieve data items using a filter condition, you call GetByFilter and pass the
data type name and the filter string as runtime parameters. The syntax for the
filter string varies depending on whether the data type is an internal, SQL
database, LDAP, or Mediator data type.

GetByFilter returns an array of references to the retrieved data items. If you do
not assign the returned array to a variable, the function assigns it to the built-in
DataItems variable and sets the value of the Num variable to the number of data
items in the array.

You can use GetByFilter with internal, SQL database, and LDAP data types. You
can also use GetByFilter with some Mediator data types.

Important: When data items are assigned to the built-in DataItem variable, they
are not immediately updated but are stored in a queue to optimize the number of
calls to the database. So, for example, if you update multiple fields in the
DataItems variable there will only be one call to update the underlying database,

138 Netcool/Impact: DSA Reference Guide

when a function call is made. To force all queued updates, call the
CommitChanges() function in your policy. The CommitChanges() function does not
take any arguments.

Syntax

The GetByFilter function has the following syntax:
[Array =] GetByFilter(DataType, Filter, [CountOnly])

Parameters

The GetByFilter function has the following parameters.

Table 45. GetByFilter function parameters

Parameter Format Description

DataType String Name of the data type.

Filter String Filter expression that specifies which data items to retrieve from
the data type.

CountOnly Boolean Pass a false value for this parameter. Provided for
compatibility with earlier versions only.

Return value

Array of references to the retrieved data items. Optional.

Examples

The following example shows how to retrieve data items from an internal or SQL
database data type.
// Call GetByFilter and pass the name of the data type
// and an SQL database filter expression

DataType = "Admin";
Filter = "Level = ’Supervisor’ AND Location LIKE ’NYC.*’";
CountOnly = false;

MyAdmins = GetByFilter(DataType, Filter, CountOnly);

The following example shows how to retrieve data items from an LDAP data type.
// Call GetByFilter and pass the name of the data type
// and an LDAP filter expression

DataType = "Customer";
Filter = "(|(facility=NYC)(facility=NNJ))";
CountOnly = false;

MyCustomers = GetByFilter(DataType, Filter, CountOnly);

The following example shows how to retrieve data items from a Mediator data
type.
// Call GetByFilter and pass the name of the data type
// and the Mediator filter exprssion

DataType = "SWNetworkElement";
Filter = "ne_name = ’DSX1 PNL-01 (ORP)’";

Chapter 12. Working with the ITNM DSA 139

CountOnly = false;

MyElements = GetByFilter(DataType, Filter, CountOnly);

Writing policies to receive events from ITNM
The ITNM Event Listener Service that you optionally configured after installing
the DSA is similar to the OMNIbusEventReader, with the exception that it can
asynchronously receive events from ITNM.

Policy Variables
After an event is received, the policy assigned to it is invoked with the variables
described in Table 46. The variables are stored in the EventContainer and must be
referenced in the policy using the EventContainer or @ notation. See the
ITNMSampleListenerPolicy for an example.

Table 46. Variables Returned by a Policy after Event Received from ITNM

Variable Description

ActionName This variable describes the type of action that is in the update. The
possible values are:

v "REC_DELETE"

v "REC_UPDATE"

v "REC_NEW"

v "DontKnow"

FieldNames This variable gives the names of the fields that are in the
CRIV_Record that is received from ITNM. Since the field names
returned in this record are not known before the policy is executed,
a string concatenation of all these fieldNames, with a delimiter of
"##", is used. This is a sample value in the FieldNames variable:

##Field1##Field2##Field3##field4 and so on.

Field1 One of the fields in the record returned by ITNM.

Field2 One of the fields in the record returned by ITNM.

Field3 One of the fields in the record returned by ITNM.

Field4 One of the fields in the record returned by ITNM.

Sample policies
The DSA provides the following sample policies:
v ITNMSampleListenerPolicy

v ITNMSamplePolicy

ITNMSampleListenerPolicy
ITNMSampleListenerPolicy.ipl shows how to use the ITNM DSA to read data
from an ITNM Listener. The policy reads the contents of an ITNM formatted string
and then prints the data to the Policy log.

ITNMSamplePolicy
ITNMSamplePolicy.ipl shows how to use the ITNM DSA to read data from an
ITNM database. The policy reads the contents of an ITNM formatted string and
then prints the data to the Policy log.

140 Netcool/Impact: DSA Reference Guide

Chapter 13. Working with the socket DSA

[Important: This feature is deprecated.] The socket DSA is a data source adaptor
that provides an interface between Tivoli Netcool/Impact and a socket server.

Socket DSA overview
The socket DSA is a data source adapter that provides an interface between
Netcool/Impact and a socket server. You can use the socket DSA as a generic
connector between Netcool/Impact and third-party entities where dedicated DSAs
do not exist. These third-party entities can be any sort of device, application, or
system that provides an interface accessible by a scripting or programming
language that supports network sockets. Such languages include C/C++, Java, and
Perl.

Socket server
A socket server is a program that acts as a mediator between a third-party entity
and the socket DSA. You can implement a custom socket server or you can expand
and use the sample socket server that is provided with the DSA. The socket server
uses the Berkeley socket protocol to communicate with Netcool/Impact via a
network. The socket server is a required part of a socket DSA solution. For more
information about implementing a custom socket server, see “Implementing a
custom socket server” on page 149.

Data model
The socket DSA data model consists of a data source and set of data types that you
define. You must define one data type for each type of data that you plan to
exchange between the socket DSA and the socket server. For more information, see
"Socket DSA data model" on page 135.

Process
At run time, Netcool/Impact uses the socket DSA to send queries to the socket
server for information that is stored or provided by a corresponding third-party
entity. The socket server then makes a request for to the entity for the data. When
the socket server receives a reply, it forwards the information back to the DSA. The
DSA then populates the socket DSA data types with the data.

Setting up the socket DSA
The socket DSA is installed automatically when you install Netcool/Impact. You
are not required to perform any additional installation or configuration steps.

Writing socket DSA policies
You use the standard Netcool/Impact function AddDataItem to send data to the
socket server from within a policy. You use GetByFilter, GetByKey, and GetByLinks
to retrieve data from the server.

© Copyright IBM Corp. 2006, 2014 141

Using the sample socket server
The socket DSA provides a sample socket server written in Perl that you can use to
test and explore the function of the DSA. You can also customize the sample server
and use it as part of your real world socket DSA solution.

Note: The best practice is to use the sample socket server to learn about the DSA
function before you attempt to implement a custom server using any other
development tools. The sample socket server is the best way to get started using
the socket DSA.

For more information about working with the sample socket server, see “Working
with the sample socket server” on page 146.

Implementing a custom socket server
If you do not want to use the sample socket server that is distributed with the
DSA, you can implement your own using any scripting or programming language
that provides access to network sockets. These languages include Java, C/C++, and
Perl. For more information about implementing a custom socket server, see
“Implementing a custom socket server” on page 149.

Socket DSA data model
The socket DSA data model consists of the following elements:
v Socket DSA data source
v Socket DSA data types

Socket DSA data source
[Important: This feature is deprecated.] The socket DSA data source is named
SocketMediatorDataSource.

Netcool/Impact automatically generates a socket DSA named
SocketMediatorDataSource at installation time. Configuration properties for this
data source should never be changed.

Socket DSA data types
The socket DSA data model consists of a set of data types that you use to represent
logical types of data passed between the DSA and the socket server.

The DSA does not provide a predefined set of data types. Instead, you must
analyze the types of data that you plan to exchange between the DSA and the
socket server and define one new data type for each required type of data.

For example, if you are using the socket server to mediate between
Netcool/Impact and a network inventory system, you might define one data type
for each network element whose information you want to access in a policy. These
data types might be named Location, Facility, Rack, Port or Card. If you are
using the socket server as an interface between Netcool/Impact and a messaging
system, you might define one data type for each type of message that is to be
passed between the DSA and the socket server. These data types might be named
ProblemRequest, ProblemReply, EnhancementRequest and EnhancementReply.

142 Netcool/Impact: DSA Reference Guide

When you customize the sample socket server or implement your own, you
specify how the socket server handles requests from Netcool/Impact that are
related to a particular data type.

Configuring the socket DSA
Procedure

To configure the socket DSA, you must manually set the properties in the DSA
properties file.
The DSA properties file is named socketdsa.properties and is located in the
$IMPACT_HOME/impact/dsa/socketdsa directory. Property values must not contain
any trailing space characters.

Note: You must stop and restart the Netcool/Impact server after you change the
properties file.
This table shows the properties in the DSA properties file.

Table 47. Socket DSA Configuration Properties

Property Description

SocketHost Host name of the system where the socket server is running.

SocketPort Port number used by the socket server to listen to incoming requests
from the socket DSA.

verboseMode Specifies whether the DSA prints debug information to the
Netcool/Impact server log.

Writing socket DSA policies
You can perform the following tasks with the socket DSA from within a
Netcool/Impact policy:
v Retrieve data from the socket server by filter
v Retrieve data from the socket server by key
v Retrieve data from the socket server by links
v Send new data to the socket server

The results of these tasks are dictated in large part by how the socket server is
implemented. To understand how a socket server handles these operations, you
can review the UserDataInterface.pm file in the sample socket server. This file
demonstrates how a simple socket server responds to requests to retrieve or add
data.

A sample is automatically imported into the Netcool/Impact server during
installation. This policy is named TestSocketDsa and demonstrates how to perform
all of the function supported by the DSA. The sample policy works with the
sample socket server that is included in the DSA tar file. For more information
about the sample server, see “Working with the sample socket server” on page 146.

Retrieving data by filter
To retrieve data by filter from the socket server, you call the GetByFilter function
and pass it the name of a socket DSA data type and the filter expression as
runtime parameters.

Chapter 13. Working with the socket DSA 143

The structure and content of the filter expression used in GetByFilter are specified
when you customize or implement the socket server.

When Netcool/Impact encounters the call to GetByFilter in the policy, it passes
the request to the socket DSA, which in turn passes the name of the data type and
the full filter expression to the socket server. The socket server then analyzes the
request and returns a nested array of sets of name/value pairs to the DSA that
fulfill the terms of the specified filter. The DSA uses this nested array to populate
the data items returned by the function in the policy.

The following example shows how to retrieve data by filter from the sample socket
server distributed with the DSA. The code that handles requests to retrieve data by
filter is located in the UserDataInterface.pm file.
Seconds = GetDate();log ("Starting TestSocketDSA with type JimmyExample at " + \

LocalTime(Seconds, "HH:mm::ss"));Type="JimmyExample";Types={"JimmyExample"};
// GetByFilter testing
// First, no filter (should get all the items)
log ("Testing GetByFilter -- finding all");
Filter = "";
CountOnly = false;
All = GetByFilter(Type, Filter, CountOnly);
i = 0;
while (i < Num) {

i = i + 1;
log("Jimmy[" + i + "] => " + All[i-1].FirstName);
// Save Jimmy’s DataItem for later on when we test the Links.
if (All[i-1].FirstName == "Jimmy") {
JimmyDataItem = All[i-1];
}

}
// Provide a filter this time.
log ("Testing GetByFilter -- finding Carl");
Filter = "FirstName = ’Carl’";
CountOnly = false;
Carl = GetByFilter(Type, Filter, CountOnly);
if (Num == 1) {

log("Found Carl! => " + Carl[0].FirstName + " " + Carl[0].LastName);
} else {

log("Error: Didn’t find Carl!");
}
log ("Testing GetByFilter -- finding Nick (bogus entry)");
Filter = "FirstName = ’Nick’";
CountOnly = false;
Nick = GetByFilter(Type, Filter, CountOnly);
if (Num == 1) {

log("Yikes We found something! => " + Nick[0]);
} else {

log("Great! We didn’t find Nick!");
}

Retrieving data by key
To retrieve data by key from the socket server, you call the GetByKey function and
pass the name of a socket DSA data type and a key expression as runtime
parameters.

When Netcool/Impact encounters the call to GetByKey in the policy, it passes the
request to the socket DSA, which in turn passes the name of the data type and the
full key expression to the socket server. The socket server then analyzes the request
and returns a set of name/value pairs to the DSA that fulfills the terms of the
specified key expression. The DSA uses this nested array to populate the data
items returned by the function in the policy.

144 Netcool/Impact: DSA Reference Guide

The structure and content of the key expression used in GetByKey are specified
when you customize or implement the socket server.

On the part of the socket server, retrieving data by key is different from retrieving
data by filter in that each set of name/value pairs that it returns to the socket DSA
can contain a name called KEY and a corresponding value. The KEY attribute is then
used by the socket DSA to populate the key field in the corresponding
Netcool/Impact data types. If there is no attribute named KEY, the socket DSA
considers the first name/value pair returned to represent the key field for a data
item.

The following example shows how to retrieve data by key from the sample socket
server distributed with the DSA. The code that handles requests to retrieve data by
key is located in the UserDataInterface.pm file.
Seconds = GetDate();log ("Starting TestSocketDSA with type JimmyExample at " + \

LocalTime(Seconds, "HH:mm::ss"));Type="JimmyExample";Types={"JimmyExample"};
// Test GetByKey

log ("Testing GetByKey with existing key == Cindy");

Key = "Cindy";MaxNum = 1;
Cindy = GetByKey(Type, Key, MaxNum);

if (Cindy == NULL) {
log("Error: Didn’t find Cindy! Num is " + Num);} else {
log("Found Cindy! => " + Cindy[0].FirstName + " Num is " + Num);}log

("Testing GetByKey with nonexistent key == Judy");

Key = "Judy";Judy = GetByKey(Type, Key, MaxNum);

if (Num == 0) {
log("Great! Didn’t find Judy! Num is " + Num);} else {
log("Yikes! Found Judy! => " + Judy[0].FirstName + " Num is " + Num);}

Retrieving data By links
To retrieve data by links from the socket server, you call GetByLinks and pass the
name of a socket DSA data type, an optional link filter, the maximum number of
data items to return and a data item that the returned data items are linked to.

When Netcool/Impact encounters the call to GetByLinks in the policy, it passes the
request to the socket DSA. The socket DSA determines the key field in the linked
data item and then passes that value along with the data type name, the link filter,
and the maximum number of data items to the socket server. The socket server
then analyzes the request and returns a nested array of sets of name/value pairs to
the DSA that are linked to the specified data item and fulfill the terms of the
specified key expression. The DSA uses this nested array to populate the data
items returned by the function in the policy.

The structure and content of the link filter used in GetByLinks are determined
when you customize or implement the socket server.

The following example shows how to retrieve data by links from the sample socket
server distributed with the DSA. The code that handles requests to retrieve data by
links is located in the UserDataInterface.pm file.

Note: Where a code line exceeds the width of page margins, the line is broken by
a space and back slash: " \".

Chapter 13. Working with the socket DSA 145

Seconds = GetDate();log ("Starting TestSocketDSA with type JimmyExample at " + \
LocalTime(Seconds, "HH:mm::ss"));Type="JimmyExample";Types={"JimmyExample"};

// GetByLinks testing// First, no filter (should get Judy and Brobot)log
("Testing GetByLinks -- finding all links from Jimmy");Filter = "";
CountOnly = false;JimmyDataItems = {};
JimmyDataItems = JimmyDataItems + JimmyDataItem;
JimmyLinks = GetByLinks(Types, Filter, null, JimmyDataItems);
i = 0;while (i < Num) { i = i + 1;

log("JimmyLinks[" + i + "] => " + JimmyLinks[i-1].FirstName);}//
Provide a filter this time.log
("Testing GetByLinks -- finding Judy"); \
Filter = "FirstName = ’Judy’";CountOnly = false;
Judy = GetByLinks(Types, Filter, null, JimmyDataItems);if (Num == 1) {

log("Found Judy! => " + Judy[0].FirstName + " " + Judy[0].LastName);} else {
log("Error: Didn’t find Judy!");}

Sending data
To send data to the socket server, you call AddDataItem and pass the name of a
socket DSA data type and a context that contains a set of name/value pairs.

When Netcool/Impact encounters the call to AddDataItem, it passes the data type
name and the set of name/value pairs to the socket DSA. The socket DSA sends
these to the socket server. The socket server then analyzes the request and uses the
data in the name/value pairs to perform an operation such as adding a new row
to a database or sending a message to a messaging system.

The following example shows how to send data to the sample socket server
distributed with the DSA. The code that handles requests to send data is located in
the UserDataInterface.pm file.
// Test AddDataItemlog("Testing AddDataItem -- Adding Hugh Example")
;Jimmy=NewObject();
Jimmy.FirstName = "Hugh";
Jimmy.LastName = "Example";
Jimmy.Hobby = "Ducks";
ObjectToCopy=Jimmy;
AddDataItem(Type, ObjectToCopy);

Working with the sample socket server
The socket DSA provides a sample socket server written in Perl that you can use to
test and explore the function of the DSA. You can also customize the sample server
and use it as part of your real world socket DSA solution.

Note: The best practice is to become familiar with the sample socket server before
you attempt to implement a custom socket server using any other development
tools. The sample socket server is the best way to get started using the Socket
DSA.

Setting up the sample socket server
Procedure

The DSA properties file contains settings for the host name and port of the socket
server. This file is named socketdsa.properties and is located in the
$IMPACT_HOME/impact/dsa/socketdsa directory. You must make sure that the
properties in this file reflect the actual location of the server.

146 Netcool/Impact: DSA Reference Guide

Sample socket server components
The sample socket server consists of the following components:
v Server.pl, which contains the main server framework and the function required

to communicate with the socket DSA
v UserDataInterface.pm, which contains the data source-facing function of the

sample server

Server.pl
Server.pl contains the main server framework and the function required to
communicate with the socket DSA. You can run Server.pl with version 5.8 and
later of the Perl interpreter. The Server.pl script is designed to work as provided.
No additional customization is required. You can, however, rewrite this script to
better suit your needs. To customize the sample socket server, change the
UserDataInterface.pm module.

Server.pl uses the Net::Server module to communicate across a network with the
DSA. Net::Server is a freely available Perl module that provides the core function
required to build a server that communicates with other applications using Internet
protocols. For more information about Net::Server, see http://seamons.com/
net_server.html.

Server.pl contains the Netcool/Impact-facing function of the sample server. To
handle requests from the socket DSA to return data from or add new data to a
data source, it uses calls to functions defined in the UserDataInterface.pm module.

At initialization, Server.pl binds to the port address specified by the $portnum
variable. The default port address is 22180.

After initialization, Server.pl waits for incoming messages from the socket DSA on
the specified port. The socket DSA initiates each message exchange by sending the
string hi to the port where the server is running. When the server receives the
string, it replies with an identical hi message.

The server then waits to receive a request from the socket DSA. Each request starts
with a message that contains the name of the operation to perform. The operation
names correspond directly to the function names GetByFilter, GetByKey,
GetByLinks, and AddDataItem. Server.pl responds to this initial message by
requesting additional information from the socket DSA based on the parameters
that are required to perform the operation. The parameters correspond to the
parameters passed to the function from within a Netcool/Impact policy.

For example, when brokering a request for the GetByFilter operation, Server.pl
asks the socket DSA for the name of the data type and the filter string. Server.pl
assigns the contents of the replies from the DSA to the $typename and $filter
variables.

When Server.pl has received the parameters required by a particular operation, it
calls the corresponding function defined in UserDataInterface.pm and passes the
parameter data that it received from the socket DSA. UserDataInterface.pm
assembles the result set for the request and returns it to Server.pl, which in turn
sends the results back to the DSA.

Server.pl sends the results back to the socket DSA as sets of name/value pairs,
where each set represents a data item and each name/value pair represents a data

Chapter 13. Working with the socket DSA 147

item field. The format of the results is a series of messages, where each name and
value is sent as a distinct message and an empty string is sent to signify the end of
a data item.

UserDataInterface.pm
UserDataInterface.pm is a Perl module that contains the data source-facing
function of the sample socket server. This module is responsible for acquiring the
information requested by the socket DSA from the underlying vendor software,
device or system, and for passing on new information that originated with Tivoli
Netcool/Impact.

By default, UserDataInterface.pm uses sample data hard-coded into the Perl
module file. This data is suitable for use when learning about socket servers and
when running the sample policies that are distributed with the DSA. When you
create a custom solution based on the sample socket server, you modify
UserDataInterface.pm so that it works with data sources specific to your
environment.

UserDataInterface.pm contains one function for each of the operations supported
by the socket DSA. These functions are GetByFilter, GetByKey, GetByLinks, and
AddDataItem. Server.pl calls these functions when it brokers requests from the
socket DSA. For example, when the socket server receives a request from the DSA
to perform a GetByFilter operation, it calls the GetByFilter function defined in
UserDataInterface.pm.

In the case of GetByFilter, GetByKey, and GetByLinks, UserDataInterface receives
parameters that specify the terms of the operation from Server.pl and then returns
either a single hash (in the case of GetByKey) or an array of hashes (in the case of
GetByFilter and GetByLinks). In all cases, each hash represents a single data item,
where the name/value pairs that it contains represent data item fields.

In the case of AddDataItem, the function receives parameters that specify the
contents of the new data element and returns a single hash that represents the new
data that has been passed to the vendor software, device, or system.

Note that all these functions require Server.pl to pass the name of an underlying
data type. In the default functions provided with UserDataInterface.pm, the type
name is used with select statements to determine the appropriate information to
perform for each type of data. The data type name can also be used in a more
general way to specify different types of operations that you want the socket
server to perform that are not necessarily associated with underlying data sets.

When you customize the sample socket server, you rewrite one or more of these
functions to either return the appropriate sets of data or send new data to the
third-party data source. You can use these functions to specify any manner of
operations, such as calls to Perl database drivers or calls to custom interfaces that
you have written to work with third-party systems.

Running the sample socket server
Procedure
1. Before you run Server.pl, you must modify the first line of the file so that it

specifies the location on the file system where Perl is installed. If you do not
modify the first line, you must explicitly invoke the Perl interpreter when you
run the script.

148 Netcool/Impact: DSA Reference Guide

2. You must also set the PERL5LIB environment variable so that it includes the
directory where you installed the sample server.
For example, if you installed the server in /usr/local/socketdsa/
SocketDSAServer/Server.pl, you can set this variable in bash or sh by entering
the following command at a command prompt:
PERL5LIB=/usr/local/socketdsa; export PERL5LIB

The directory that you specify must be two levels up from Server.pl.
3. To run Server.pl, enter the following command at a command line prompt:

Server.pl -port port_number

where port_number is the port where you want the sample socket server to run.
If you do not specify a port, the server uses 22180, which is the default.
You can also run Server.pl by explicitly invoking the Perl compiler as follows:
perl Server.pl -port port_number

Testing the socket server
The socket DSA provides a command line client that you can use to test the
availability of socket servers, including the sample server provided in the DSA tar
file. You use this client to send messages to a socket server using a simple
command line input. The client is named TestClient and is located in the DSA jar
file.

About this task

Procedure
v To test the socket server, enter the following command at a command-line

prompt on the system where you are running Tivoli Netcool/Impact:
java com.micromuse.dsa.socketdsa.TestClient hostname

port

where hostname is the name of the system where the socket server is running
and port is the port number used by the server.

v To test the availability of a socket server, enter the following string at the
command line:
hi

The test client sends this string to the socket server and prints the response. If
the socket server is running correctly, the response will be a hi string identical to
the one sent from the command line.

What to do next

You can perform additional testing by entering additional strings at the command
line, following the command sequence documented in the code comments in
Server.pl.

Implementing a custom socket server
If you do not want to use the sample socket server that is distributed with the
DSA, you can implement your own using any scripting or programming language
that provides access to network sockets. These languages include Java, C/C++, and
Perl.

A custom socket server must perform the following tasks:
v Create a receiver socket and bind to a port

Chapter 13. Working with the socket DSA 149

v Wait for DSA connections and create connection-specific sockets
v Perform handshaking with the DSA
v Listen for operation requests from the DSA
v Request the operation parameters from the DSA
v Perform the operations requested by the DSA
v Return operation results to the DSA

Creating a socket
At startup, the custom socket server must create a new socket and bind to the port
that it will use for communication with the socket DSA. You specify this port in
the DSA properties file when you configure the DSA, as described in “Configuring
the socket DSA” on page 143.

Waiting for DSA connections
Procedure

After you created a new socket, the socket server must listen at the port for a
connection from the socket DSA. When a connection arrives, the server must create
a new socket to use for communication specific to that connection.

Performing handshaking with the DSA
Procedure

After the DSA establishes a connection, it sends the greeting string hi to the socket
server. The socket server must reply with its own identical hi message in order for
handshaking to be complete.

Listening for operation requests from the socket DSA
The socket DSA is capable of sending the following operation requests to the
socket server:
v GetByFilter

v GetByKey

v GetByLinks

v AddDataItem

After the DSA and the server exchange handshaking messages, the DSA sends an
operation request to the server. The operation request is a message that consists of
the name of the operation (for example, AddDataItem). The socket server must
accept this request and determine which tasks to perform based on the contents of
the message.

Requesting operation parameters from the socket DSA
After the socket server has received the operation request from the socket DSA, it
must request the operation parameters from the DSA one at a time in a series of
messages. The DSA replies by sending the parameter values as specified in the call
to GetByFilter, GetByKey, GetByLinks or AddDataItem in the Netcool/Impact policy.

The following table shows the contents of the messages that the socket server must
send to the socket DSA to request the parameters for a GetByFilter operation.

150 Netcool/Impact: DSA Reference Guide

Table 48. GetByFilter Operation Request Messages

Request Message Description

sendtype Requests the name of the data type associated with the
operation. This is the DataType parameter specified in the call
to the GetByFilter function in a Netcool/Impact policy. The
DSA returns a string that contains the data type name.

sendfilter Requests the filter string associated with the operation. This is
the Filter parameter specified in the call to the GetByFilter
function in a Netcool/Impact policy. The DSA returns a string
that contains the filter.

The following table shows the contents of the messages that the socket server must
send to the socket DSA to request the parameters for a GetByKey operation.

Table 49. GetByKey Operation Request Messages

Request Message Description

sendtype Requests the name of the data type associated with the
operation. This is the DataType parameter specified in the call
to the GetByKey function in a Netcool/Impact policy. The DSA
returns a string that contains the data type name.

sendkey Requests the filter string associated with the operation. This is
the Key parameter specified in the call to the GetByKey
function in a Netcool/Impact policy. The DSA returns a string
that contains the filter.

The following table shows the contents of the messages that the socket server must
send to the socket DSA to request the parameters for a GetByLinks operation.

Table 50. GetByLinks Operation Request Messages

Request Message Description

sendfromtype Requests the name of the source data type associated with the
operation. This is the data type of the first element in the
DataItems parameter specified in the call to the GetByLinks
function in a Netcool/Impact policy. The DSA returns a string
that contains the data type name.

sendfromkey Requests the filter string associated with the operation. This is
the Key parameter specified in the call to the GetByKey
function in a Netcool/Impact policy. The DSA returns a string
that contains the filter.

sendtotype Requests the name of the target data type associated with the
operation. This is the data type of the first element in the
DataTypes parameter specified in the call to the GetByLinks
function in a Netcool/Impact policy. The DSA returns a string
that contains the data type name.

sendfilter Requests the filter string associated with the operation. This is
the LinkFilter parameter specified in the call to the GetByLinks
function in the Netcool/Impact policy. The DSA returns a
string that contains the filter.

The following table shows the contents of the messages that the socket server must
send to the socket DSA to request the parameters for a AddDataItem operation.
Note that AddDataItem returns a set of name/value pairs to the Netcool/Impact
server that represent the contents of the new data item added.

Chapter 13. Working with the socket DSA 151

Table 51. AddDataItem Operation Request Messages

Request Message Description

sendtype Requests the name of the data type associated with the
operation. This is the DataType parameter specified in the call
to the AddDataItem function in a Netcool/Impact policy. The
DSA returns a string that contains the data type name.

sendattributes Requests the attributes of the data item associated with the
operation. These are a series of name/value pairs that
represent the member variables in the ContentToCopy
parameter specified in the call to AddDataItem. The DSA
returns a series of names and values, each of which is a
separate string. The DSA indicates that there are no more
attributes in the data item by sending an empty string.

Performing operations requested by the DSA
Procedure

After the socket server requests the parameters from the socket DSA, it can
perform operations to retrieve data from or add data to the underlying software,
device or system. For example, you can use the information sent by the socket
DSA to query an external database or to send a message on a message system.

Returning operation results to the DSA
Procedure

After the socket server has performed the requested operation, it can return the
results to the DSA. The results must be returned as a series of messages that
describe the contents of the data items resulting from the operation. The first
message in this series is a string that contains the number of data items that will
be returned. Following this are sets of messages that contain name/value pairs that
represent data item fields. The socket server indicates the end of each data item by
sending a newline character.
For more details, refer to the sample socket implementation and to the inline
comments in the socket server code.

Socket DSA and socket server connection state
The connection state between the socket DSA and a socket server is affected when
either the DSA or the server goes down during the communication process.

If the socket DSA goes down, the server will stay up. Any communication between
the components is terminated.

If the socket server goes down, the DSA sends messages to the server log that
indicate that it cannot connect to the server. The DSA will then try to reconnect
one time before terminating the communication process with the socket server.

When the socket server is brought back up, the DSA will automatically reconnect
the next time it handles a request for an operation from Netcool/Impact. If it
cannot reconnect, it will send a message to the server log indicated that it was not
able to communicate with the socket server.

152 Netcool/Impact: DSA Reference Guide

The socket DSA and sample socket server do not time out connections after a
certain length of time. You can extend the sample socket server to handle timeouts
using information in the Net::Server documentation.

Socket server threading
If you have configured Netcool/Impact to use a multi-threaded event processor,
the best practice is to run the socket server as a multi-threaded application.

The default behavior of Server.pl is to allow multiple threads based on UNIX
forking. This function is provided by the Net::Server module, which provides a
flexible set of threading options that you can use to adapt to your specific
implementation.

Recent versions of Perl also provide additional options for managing application
threading.

Chapter 13. Working with the socket DSA 153

154 Netcool/Impact: DSA Reference Guide

Chapter 14. Working with the Cramer DSA

[Important: This feature is deprecated.] The Cramer Dimension DSA is a
customized XML DSA that you can use to integrate network inventory data with
Netcool/OMNIbus.

Restriction: The integration was tested against Cramer Dimension version 4.
However, Cramer Systems has confirmed that the interface for Cramer Dimension
version 5 is backward compatible with the tested version.

Cramer Dimension DSA overview
The Cramer Dimension DSA provides a communication layer between
Netcool/Impact and Cramer Dimension.

Netcool/Impact uses the DSA to send queries via HTTP to the Cramer Dimension
server. The server responds with an XML string that contains the information
requested. The DSA then populates a set of data items in Netcool/Impact with the
information in the XML string.

To set up the Cramer Dimension DSA, you must install it, and then configure it by
editing its HTTP types file. After you install the DSA, it runs as a process in the
Impact Server, so you do not have to start or stop it independently.

The Cramer Dimension data model consists of a data source and two sets of data
types that are created automatically when you install the DSA.

You retrieve network inventory information stored in Cramer Dimension from
within a policy. A set of sample policies is provided with the DSA that demonstrate
how to use the Cramer Dimension DSA, before you use it in your production
environment. You will use the Cramer Dimension DSA in your custom policies by
calling the GetByFilter, and GetByLinks functions.

Files used with the Cramer Dimension DSA
A list of files provided with, or used with the Cramer Dimension DSA.

File Description

DSA Properties File The $IMPACT_HOME/dsa/XmlDsa/XmlDsa.properties file.

XML Setup Scripts These files located in the $IMPACT_HOME/dsa/XmlDsa/bin
directory.

XML Configuration Script The $IMPACT_HOME/dsa/XmlDsa/XmlHttpTypes file.

How-To Documents The files located in the $IMPACT_HOME/dsa/XmlDsa/docs
directory.

PERL script The $IMPACT_HOME/add-ons/cramer/DynamicFilter script can
be used as an example for the ObjectServer.

Sample Implementation You can find sample Cramer DSA policies, and data types
in $IMPACT_HOME/add-ons/cramer/importData. You must run
nci_import to import them into your Netcool/Impact
installation.

© Copyright IBM Corp. 2006, 2014 155

Setting up the Cramer Dimension DSA
Use this procedure to set up the Cramer Dimension DSA.

Before you begin
v Familiarize yourself with the integration by reading the Cramer DSA

documentation, in the $IMPACT_HOME/add-ons/cramer/docs directory.
v Configure Cramer System (SAA Adapter) to use basic authentication. For more

information, see “Configuring Cramer System to use basic authentication” on
page 157.

v Obtain the realm details, and the connection information from the Cramer
System administrator, and test if the realm on the Cramer side is set up. You
should be able to sign on to the realm, for example, if you type this address in
your browser address bar:
http://hostname:port
/Cramer5/httpgateway/RequestDispatcherAction.do?instance=hostname

where hostname, and port is the Cramer System address, and port.

Procedure
1. Import the Cramer project into the Impact Server, using the nci_import script.

$IMPACT_HOME/bin/nci_import NCI $IMPACT_HOME/add-ons/cramer/importData

Running this command creates a Cramer project that contains sample policies
and data types for Cramer DSA.
Attention: You must import the project into a running Impact Server. Make
sure no files are locked on the server when you import the Cramer project, or
the import will fail.

2. Navigate to the $IMPACT_HOME/add-ons/cramer directory, and copy the following
files to the $IMPACT_HOME/dsa/XmlDSA directory:
v cramerDim.dtd

v cramerOr.dtd

3. Update the $IMPACT_HOME/dsa/XmlDSA/XmlHttpTypes file with the following
entries for Cramer DSA:
XmlDsa.httpTypes.1.typeName=CramerDim
XmlDsa.httpTypes.1.dtdFile=dsa/XmlDsa/cramerDim.dtd
XmlDsa.httpTypes.1.prefix=CramerDim_
XmlDsa.httpTypes.1.url=
http://198.51.100.218:7777/pls/dat2/HTTPGateway.Listener
XmlDsa.httpTypes.1.user=Cramer
XmlDsa.httpTypes.1.password=
{aes}337C5EF0D2D85CF4420F856E325DA084
XmlDsa.httpTypes.1.realm=dat2
XmlDsa.httpTypes.2.typeName=CramerOR
XmlDsa.httpTypes.2.dtdFile=dsa/XmlDsa/cramerOR.dtd
XmlDsa.httpTypes.2.prefix=CramerOR_
XmlDsa.httpTypes.2.url=
http://198.51.100.218:7777/pls/dat2/HTTPGateway.Listener
XmlDsa.httpTypes.2.user=
Cramer
XmlDsa.httpTypes.2.password=
{aes}337C5EF0D2D85CF4420F856E325DA084
XmlDsa.httpTypes.2.realm=dat2

156 Netcool/Impact: DSA Reference Guide

Attention: Change the sample values in the example to real values, in
particular the URL, user, password, and possibly the realm properties. The
password must be encrypted using nci_crypt, and you must paste the
encrypted string as the value for the XmlDsa.httpTypes.#.password property.
For more information about using the nci_crypt tool, see the “nci_crypt” section,
in the Administration Guide. Modify the properties indices according to how
many sets of properties you already have in your XmlHttpTypes file.

4. Restart the Impact Server for the changes to take effect.

Configuring Cramer System to use basic authentication
You must configure Cramer System to use basic authentication so that it can work
with Netcool/Impact.

Procedure
1. Remove the SSO Authentication/Application Filter.

To do that, edit the <deployment_root>/applications/HTTPGatwewayWAR/
httpgateway/WEB-INF/web.xml file within the HTTP Gateway Web-application.

2. Configure the Web-container to enable HTTP basic authentication for the HTTP
Gateway Web application.
Edit the orion-application.xml file, by following the Advanced Properties link
under HTTPGatewayWAR, in the administration console.

3. Configure appropriate basic authentication user names and passwords within
the Web container.
In the administration console, follow the Security link under
HTTPGatewayWAR, and add the ntlcra/ntlcra user to the jazn.com realm.

4. Map each basic authentication user to an appropriate Cramer distinguished
name (DN) within the HTTP Gateway Web-application.
Edit the <deployment-root>/applications/HTTPGatwewayWAR/httpgateway/
WEBINF/resources/xml/usermappings.xml file.

Cramer Dimension data model
The Cramer Dimension data model consists of a data source and two sets of data
types that are created automatically when you install the DSA.

This data model is capable of holding all the data returned by queries to Cramer
Dimension.

Note: When you install the Cramer Dimension DSA, the data source and data
types are inserted into the Impact Project called Cramer on the target Impact
Server.

Cramer Dimension data source
The Cramer Dimension data source, XmlDsaMediatorDataSource, represents the
Cramer Dimension server as a source of data for use in Netcool/Impact policies.

The DSA installer automatically sets the configuration properties for
XmlDsaMediatorDataSource. Do not change the data source name or the Mediator
class name after installation.

Chapter 14. Working with the Cramer DSA 157

Cramer Dimension data types
The Cramer Dimension data model contains two sets of data types, and each set
corresponds to a DTD file that describes a set of data that Netcool/Impact can
request from the Cramer Dimension server.

These DTD files are provided by Cramer Dimension and need to be copied from
$IMPACT_HOME/add-ons/cramer directory to $IMPACT_HOME/dsa/XmlDsa directory
when you install the DSA. As with the XmlDsaMediatorDataSource, the data types
are inserted into the Impact porject called Cramer on the target Netcool/Impact
server. Again, the DTD files need to be located in $IMPACT_HOME/dsa/XmlDsa.

The Cramer Dimension data types have a mapping relationship with the
corresponding DTD file. In this relationship, there is one data type for each XML
element defined in the DTD. Each XML attribute in the DTD file is specified as a
field in the corresponding data type.

The first set of data types are CramerDim data types. These correspond to
elements in the cramerDim.dtd file. This DTD specifies the contents of XML strings
in the Dimension format. When Netcool/Impact requests information in this
format from the Cramer Dimension server, the content of the XML string that is
returned reflects the properties of this DTD file. CramerDim data types begin with
the CramerDim_ prefix.

The second set of data types are CramerOR data types. These correspond to
elements in the cramerOR.dtd file. This DTD specifies the contents of XML strings
in the Object Reference format. CramerOR data types begin with the CramerOR_
prefix.

The Dimension and Object Reference formats define similar sets of data. To
determine which format you should use, you should be familiar with the DTD files
and your Cramer Dimension configuration.

Cramer Dimension policies
You can find sample Cramer Dimension policies that demonstrate how to use the
Cramer Dimension DSA in the Cramer project.

You can use these policies with minor modification to retrieve information from
Cramer Dimension and use it to accomplish a variety of tasks with
Netcool/Impact. You can also review these policies to better understand how to
use the Cramer Dimension DSA in your environment. You can also find an
example policy, CramerDirector.ipl, in the $IMPACT_HOME/add-ons/cramer/docs
directory.

In your own Cramer Dimension policies, you use GetByFilter to retrieve the XML
data from the Cramer Dimension server. When you call the GetByFilter function,
you specify a top-level Cramer data type and a filter string as runtime parameters.
When Netcool/Impact encounters this operation in a policy, the DSA sends a
request by HTTP to the Cramer Dimension server.

The server responds with an XML string that contains the requested data. The DSA
then populates the Cramer Dimension data model with the information in the
XML string.

158 Netcool/Impact: DSA Reference Guide

You can traverse the returned XML data within the policy, using the GetByLinks
function or the .links notation and use the data to enrich Netcool/OMNIbus events
or to perform other tasks.

You can also access XML element and attribute values from within your Cramer
Dimension policy.

Retrieving XML Data from Cramer Dimension
The first step in writing a policy is to call GetByFilter and pass the name of a
top-level Cramer Dimension data type and a filter string.

When Netcool/Impact encounters this statement in the policy, the DSA makes an
HTTP request to the Cramer Dimension server for the specified information. The
DSA then uses the information in the XML string returned by the server to
populate data items in the corresponding set of data types.

The filter string that you use with the call to GetByFilter uses a special format that
provides the HTTP operation type, the relative URL path of the HTTP gateway
listener on the Cramer Dimension server, and an XML string that specifies what
data to return to Netcool/Impact. The filter string has the following format:
"Operation = POST AND FilePath = URLPath AND XMLRequest = XmlString"

Note: The filter argument values must be enclosed in double quotes "" and
separated by the key word AND.

The URL path of the HTTP gateway listener is specified as the path relative to the
root of the Cramer HTTP adaptor. The following is an example of a valid path:
pls/dat2/HTTPGateway.Listener

This path corresponds to a location on the server such as http://
192.168.1.1:7777/pls/dat2/HTTPGateway.Listener.

The XmlString parameter is a segment of XML data that specifies what data to
return to Netcool/Impact. You can create this string manually, or you can use the
standard policy CramerRequestMaker to automatically assemble the XML string
using the appropriate format. For information on the format of the XML query
string, see the comments in the CramerRequestMaker policy. This policy is
installed automatically when you install Netcool/Impact and is located by default
in the Global Repository.

The following example shows how to retrieve an XML data set from Cramer
Dimension using GetByFilter. In this example, you use the CramerRequestMaker
policy to generate the XML query string. This example uses the CramerDim
format.
// Generate the XML query string using CramerRequestMaker.
// CramerRequestMaker stores the resulting query string
// in the XmlString variable.
QueryType = "TRAFFIC";
InputFormat = "DIM";
OutputFormat = "DIM";
DimObjectReference = newobject();
DimObjectReference.Node = 1755;
Activate(Null, "CramerRequestMaker");
// Call GetByFilter and pass the top-level CramerDim data type
// and the filter string as runtime parameters.
Type = "CramerDim";
Filter = "Operation = POST AND FilePath = pls/dat2/HTTPGateway.Listener AND \

Chapter 14. Working with the Cramer DSA 159

XmlString = " + XmlString + "";
CountOnly = False;
Results = GetByFilter(Type, Filter, CountOnly);

Using GetByLinks to traverse the XML data
After you retrieved the desired set of XML data from the Cramer Dimension
server, the next step is to traverse the data within the policy so that you can access
individual XML elements and their attributes.

When the DSA populates data items in the data model with XML information that
it retrieved from the Cramer Dimension server, it creates static links between
individual data items. These links represent the containment relationship between
the XML elements. Data items that represent an XML element are statically linked
to other data items that represent their child nodes.

One way to traverse the XML data is by using successive calls to GetByLinks. To
traverse the XML data in this way, you must first retrieve the top-level data item
by calling GetByLinks and passing the name of the top-level data type as a
runtime parameter. Then you can call GetByLinks any number of subsequent times
to retrieve the data stored in child XML nodes.

The following example shows how to traverse the XML data using GetByLinks. In
this example, the data returned from the Cramer Dimension server is in
CramerDim format and is as follows:
<ENVELOPE DESTINATION="Netcool" SENDER="Fault Manager Adaptor">
<BODY>
<GETSERVICERESPONSE>
<OUTPUTFORMAT>Cramer FMA Object Ref</OUTPUTFORMAT>
<SERVICELIST>
<SERVICE DIMENSIONID="42990" NAME="FMA Test Service" SERVICETYPE="Standard"
STATUS="Maintenance" PROTECTIONSTATUS="Affected">
<SUBSCRIBER DIMENSIONID="1176" NAME="TestSub_2"></SUBSCRIBER>
</SERVICE>
<SERVICE DIMENSIONID="42991" NAME="Cable TV" SERVICETYPE="Standard"
STATUS="On" PROTECTIONSTATUS="Affected">
<SUBSCRIBER DIMENSIONID="1177" NAME="TestSub_5"></SUBSCRIBER>
<SUBSCRIBER DIMENSIONID="1178" NAME="TestSub_6"></SUBSCRIBER>
</SERVICE>
</SERVICELIST>
</GETSERVICERESPONSE>
</BODY>
</ENVELOPE>

To traverse this data, you can first call GetByLinks and pass the name of the
root-level data type as a runtime parameter. GetByLinks returns an array that
contains a single data item. This data item represents the root-level ENVELOPE
element in the XML data. In subsequent calls, the elements as defined in the xml
file's hierarchy are returned, preserving the hierarchical relationship as it
exists in the xml file. In each subsequent call, GetByLinks returns a variable in
which each data item is associated with a child node of the source data item.

Note: GetByLinks always returns an array.

The following code segment continues from the policy example in Retrieving XML
Data from Cramer Dimension, in which a call to GetByFilter returned an array
named Results.
// Call GetByLinks and pass the name of the root-level data type.
// In this instance, the data type is CramerDim_ENVELOPE.
DataTypes = {"CramerDim_ENVELOPE"};

160 Netcool/Impact: DSA Reference Guide

LinkFilter = "";
Envelope = GetByLinks(DataTypes, LinkFilter, 1, Results);
// Call GetByLinks and pass the name of a data type that represents
// a child node of ENVELOPE.
DataTypes = {"CramerDim_BODY");
LinkFilter = "";
Body = GetByLinks(DataTypes, LinkFilter, 1, Envelope);

// Call GetByLinks and pass the name of a data type that represents
// a child node of BODY.
DataTypes = {"CramerDim_GETSERVICERESPONSE");
LinkFilter = "";
GetServiceResponse = GetByLinks(DataTypes, LinkFilter, 1, Body);

Using the Embedded Linking Syntax to traverse the XML data
You can also use the embedded linking syntax to traverse the XML data returned
from the Cramer Dimension server.

The embedded linking syntax is easier to use than many successive calls to
GetByLinks. The following example shows how to use the linking syntax to
retrieve the first child element data item linked to the root-level data item, where
the data type of the child item is CramerDim_BODY. In this example, you have
previously retrieved an array named Envelope using a call to GetByLinks.
Body = Envelope[0].links.CramerDim_BODY.first;

Accessing XML element and attribute values
You can access XML element and attribute values from within a policy by
referencing the PCDATA variable or attribute member variables in the
corresponding data item.

The value of an XML element is stored in a member variable named PCDATA and
the value of any associated XML attributes is stored in member variables that have
the same name as the attribute.

The following example shows how to access the value of the OUTPUTFORMAT
element in the XML fragment used in previous examples. In this example you have
already obtained the data item that corresponds to the element using GetByLinks
and you have stored the item in a variable named OutputFormat.
Log(OutputFormat[0].PCDATA);

This statement prints the following to the policy log:
Cramer FMA Object Ref

The following example shows how to access the value of the DESTINATION
attribute in the ENVELOPE element in the XML fragment used in previous
examples. In this example you have already obtained the data item that
corresponds to the element using GetByLinks and you have stored the item in a
variable named Envelope.
Log(Envelope[0].DESTINATION);

This statement prints the following to the policy log:
Netcool

Chapter 14. Working with the Cramer DSA 161

Sample Implementation
The DSA for Cramer Dimension installation comes with an optional sample
implementation that demonstrates basic alarm suppression and customer impact
analysis.

To use this solution, you must first make the following changes to the
ObjectServer, and Netcool/Impact:
v Add fields to the ObjectServer.
v Add data types to Netcool/Impact, in addition to the data types that were

created during the installation.
v Configure the Event Reader to start different policies when events occur in the

ObjectServer.

Updating the ObjectServer
To use the sample implementation you must create fields in the ObjectServer.

Add the following fields:

Table 52. Fields to be added to the ObjectServer (for integrated solution)

Field
Field
type

Field
size Description

Shelf varchar 64 Shelf number

Slot varchar 64 Slot number

Card varchar 64 Card number

PhysicalPort varchar 64 Physical Port number

LogicalPort varchar 64 Logical Port number

CramerImpact int Specifies that the event is to be processed by the
Cramer/Impact application. A value of 1 to 9
specifies that the Event Reader has to process
the event. A value of 2 also specifies that
Netcool/Impact must conduct a customer
impact analysis of the event. A value of 10
specifies that the event will not be processed.

Correlatable int Identifies for Netcool/Impact whether the event
is a Probable Fault Event (PFE) (value of 1) or a
Probable Symptom Event (PSE) (value of 2).

CorrelatedTo int The unique ID of the PFE for this PSE.

Service varchar 64 Identifies the affected service.

Customer varchar 64 Customer name.

After you added these fields to the ObjectServer, you should create an event list
view that shows these fields. For information about adding fields to the
ObjectServer, see the Netcool/OMNIbus Administration Guide. For information about
creating an event list view, see the Netcool/OMNIbus User Guide.

Configuring Netcool/Impact
To set up the sample implementation, you must make the following changes to
Netcool/Impact:
v Create a new data type called CramerEvents.

162 Netcool/Impact: DSA Reference Guide

v Configure the event reader to handle incoming events.

CramerEvents data type

The CramerEvents data type is an ObjectServer data type. You must create this
data type and provide connection information for the ObjectServer that you
modified in the previous step.

Event Reader

The event reader service must be set up to point to the ObjectServer providing the
events. The filter for the event reader is be similar to the following example:
((CramerImpact > 0) AND (CramerImpact < 10))

You must also configure the event reader so that its event mappings run the
appropriate policies when certain events occur in the ObjectServer. For information
about setting up event mappings, see the User Interface Guide.

DSA for Cramer Dimension Standard Policies
The DSA for Cramer Dimension is installed with a collection of standard policies.

Extensive inline comments within each policy file describe the policy's runtime
parameters, outputs, and behavior. The following standard policies are provided:

CramerDimTestPolicy
You can use the CramerDimTestPolicy to help you understand how to get
data from the Cramer Dimension database using the Dimension ID format.
Refer to the description tag of this policy and the comments included in
the policy for more information.

CramerORTestPolicy
The CramerORTestPolicy is provided to help you understand how to get
data from the Cramer Dimension database using the Object Reference
format. Refer to the description tag of this policy and the comments
included in the policy for more information.

ServiceImpactAnalyzer
The ServiceImpactAnalyzer policy analyzes the impact on services that are
related to the involved event. It queries the Cramer Dimension database
for all the services that are affected by the event and then sends new
Service Impact events to the ObjectServer for each service that is affected
by this event.

PFEProcessor
The PFEProcessor (Probable Fault Event Processor) policy is run for events
that are marked as probable root causes of events. It queries the Cramer
Dimension database for all the circuits and related ports that are affected
by the event (as specified in the node+Shelf+Card+Slot of the event).

It then updates those particular port/circuit events in the ObjectServer,
setting the CorrelatedTo field with the unique ID of the event that
suppressed this event.

PFSProcessor
The PFSProcessor (Probable Fault Symptoms Processor) policy is run for all
events that are marked as probable symptom events. It queries the Cramer
Dimension database for all the circuits and related ports that are related to
the event.

Chapter 14. Working with the Cramer DSA 163

It will then update its CorrelatedTo field to the unique ID of the event that
matches the related events that came back from the Cramer Dimension
database. In other words it is suppressed by that event.

CramerGetORTraffic
This policy returns a list of circuits that are affected by an event. It is in the
object reference format.

CramerGetORServices
The CramerGerOrServices policy returns a list of services that are affected
by an event. It is in the object reference format.

CramerRequestMaker
The CramerRequestMaker policy is a utility routine that produces the xml
string that is needed by Cramer Dimension. You should review the
CramerRequestMaker policy to ensure that it is building xml strings with
the parameters required by your Cramer Dimension installation.

CramerGetORTraffic parameters

The CramerGetORTraffic policy has the following runtime parameters:

DimObjectReference
This variable provides the context for the object for which the affected
circuits are being determined. This is provided in the form of the Cramer
Dimension ID. Either this parameter or the ORObjectReference parameter
should be null. A typical value for this variable would look like:
DimObjectReference.NODE = 1755

ORObjectReference
This variable provides the context for the object for which the affected
circuits are being determined. This is provided in the form of object
references. A typical value for a card that was affected is given as:
ORObjectReference.NODE = "Core 1";
ORObjectReference.Shelf = 1;
ORObjectReference.Slot = 2;
ORObjectReference.Card = 10;

Output parameters return a list of circuits that were affected by the event. The
result is an array of circuit objects, that look like the following example:
Circuit.TrafficType = "Terminating";
Circuit.CircuitType = "SDH MS Bearer";
Circuit.Status = "Maintenance";
Circuit.DimensionId = 1234;
Circuit.Name = "MSB Core1 Hub 1";
Circuit.Aend_Node_Name = "Core 1";
Circuit.Aend_Node_Status = "Maintenance";
Circuit.Aend_Shelf_Number = 1;
Circuit.Aend_Slot_Number = 1;
Circuit.Aend_Slot_Position = 1;

The name of the array is CircuitArray. The number of circuits in this array is given
by CircuitCount.

CramerGetORServices parameters

The CramerGetORServices policy has the following runtime parameters:

DimObjectReference
This variable provides the context for the object for which the affected

164 Netcool/Impact: DSA Reference Guide

circuits are being determined. This is provided in the form of the
Dimension ID. Either this parameter or the ORObjectReference parameter
should be null. A typical value for this variable would looks like:
DimObjectReference.NODE = 1755

ORObjectReference
This variable provides the context for the object for which the affected
circuits are being determined. This is provided in the form of object
references. A typical value for a card that was affected is given as:
ORObjectReference.NODE = "Core 1";
ORObjectReference.Shelf = 1;
ORObjectReference.Slot = 2;
ORObjectReference.Card = 10

Output parameters return a list of circuits that were affected by the event. The
result is an array of circuit objects that look like the following example:
Service.Name = "ServiceToMicromuse";
Service.Type = "GOLD";
Service.Status = "Maintenance";
Service.Protection = "Possibly Affected";
Service.Subscriber = "Micromuse";

The name of the array is ServiceArray. The count of services is given by
ServiceCount.

CramerRequestMaker parameters

The CramerRequestMaker policy has the following runtime parameters:

QueryType
This parameter applies whether it is a GetTraffic or GetService type.
Possible values are TRAFFIC and SERVICE. The default is TRAFFIC.

InputFormat
This parameter specifies the format of the input request. Possible values
are DIM and OR. The default is DIM. It specifies whether is in a
Dimension ID format or an object reference format.

OutputFormat
This parameter specifies the response format. Valid values are DIM or OR.
The default is DIM.

CircuitTypeFilterList
This parameter is an array object that contains a list of circuit filters. This
array is valid only when the QueryType is set to TRAFFIC.

ServiceTypeFilterList
This parameter is an array object that contains a list of service filters. This
array is valid only when the QueryType is set to SERVICE.

DimObjectReference
This parameter holds the context that is needed to represent an object in
the Dimension ID format. It is made up of Node, Card, and Port. For
example, if the object reference is a Card with a Dimension ID of 2026, the
object will have a value similar to the following example:
DimObjectReference.Node = 0;
DimObjectReference.Card = 2026;
DimObjectReference.Port = 0;

Only one of these members can have a non-zero value.

Chapter 14. Working with the Cramer DSA 165

This parameter is only relevant when InputFormat is set to DIM
(Dimension ID-based).

ORObjectReference
This parameter holds the context that is needed to represent an object in
the object reference format. It is made up of Node, Shelf, Slot, Card,
PhysicalPort, and LogicalPort. Together they give a complete containment
representation of a particular object's reference. A typical PhysicalPort
reference is made up of the Node, Shelf, Slot, and Card and is represented
by a value similar to the following example:
ORObjectReference.Node = 24; /* Node number 24 */
ORObjectReference.Shelf = 2; /* Shelf 2 in this node*/
ORObjectReference.Card = 7; /* Card 7 in this shelf */
ORObjectReference.Slot = 3; /* Third slot */
ORObjectReference.PhysicalPort = 31;
ORObjectReference.LogicalPort = 3;

This parameter is relevant only when InputFormat is set to OR (Object
Reference-based).

The CramerRequestMaker policy has one output parameter:

XMLString
The XML string is created as a result of parsing the runtime parameters. It
complies with the DTD for the respective runtime formats.

If the parameter has a null value, it implies that some of the runtime
parameters contain invalid values.

166 Netcool/Impact: DSA Reference Guide

Appendix A. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. These are the
major accessibility features you can use with Netcool/Impact when accessing it on
the IBM Personal Communications terminal emulator:
v You can operate all features using the keyboard instead of the mouse.
v You can read text through interaction with assistive technology.
v You can use system settings for font, size, and color for all user interface

controls.
v You can magnify what is displayed on your screen.

For more information about viewing PDFs from Adobe, go to the following web
site: http://www.adobe.com/enterprise/accessibility/main.html

© Copyright IBM Corp. 2006, 2014 167

168 Netcool/Impact: DSA Reference Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2006, 2014 169

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

170 Netcool/Impact: DSA Reference Guide

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Appendix B. Notices 171

172 Netcool/Impact: DSA Reference Guide

Glossary

This glossary includes terms and definitions for Netcool/Impact.

The following cross-references are used in this glossary:
v See refers you from a term to a preferred synonym, or from an acronym or

abbreviation to the defined full form.
v See also refers you to a related or contrasting term.

To view glossaries for other IBM products, go to www.ibm.com/software/
globalization/terminology (opens in new window).

A
assignment operator

An operator that sets or resets a value to a variable. See also operator.

B
Boolean operator

A built-in function that specifies a logical operation of AND, OR or NOT
when sets of operations are evaluated. The Boolean operators are &&, ||
and !. See also operator.

C
command execution manager

The service that manages remote command execution through a function in
the policies.

command line manager
The service that manages the command-line interface.

Common Object Request Broker Architecture (CORBA)
An architecture and a specification for distributed object-oriented
computing that separates client and server programs with a formal
interface definition.

comparison operator
A built-in function that is used to compare two values. The comparison
operators are ==, !=, <, >, <= and >=. See also operator.

control structure
A statement block in the policy that is executed when the terms of the
control condition are satisfied.

CORBA
See Common Object Request Broker Architecture.

D
database (DB)

A collection of interrelated or independent data items that are stored
together to serve one or more applications. See also database server.

© Copyright IBM Corporation 2005, 2011 © IBM 2006, 2014 173

http://www-306.ibm.com/software/globalization/terminology/
http://www-306.ibm.com/software/globalization/terminology/

database event listener
A service that listens for incoming messages from an SQL database data
source and then triggers policies based on the incoming message data.

database event reader
An event reader that monitors an SQL database event source for new and
modified events and triggers policies based on the event information. See
also event reader.

database server
A software program that uses a database manager to provide database
services to other software programs or computers. See also database.

data item
A unit of information to be processed.

data model
An abstract representation of the business data and metadata used in an
installation. A data model contains data sources, data types, links, and
event sources.

data source
A repository of data to which a federated server can connect and then
retrieve data by using wrappers. A data source can contain relational
databases, XML files, Excel spreadsheets, table-structured files, or other
objects. In a federated system, data sources seem to be a single collective
database.

data source adapter (DSA)
A component that allows the application to access data stored in an
external source.

data type
An element of a data model that represents a set of data stored in a data
source, for example, a table or view in a relational database.

DB See database.

DSA See data source adapter.

dynamic link
An element of a data model that represents a dynamic relationship
between data items in data types. See also link.

E
email reader

A service that polls a Post Office Protocol (POP) mail server at intervals for
incoming email and then triggers policies based on the incoming email
data.

email sender
A service that sends email through an Simple Mail Transfer Protocol
(SMTP) mail server.

event An occurrence of significance to a task or system. Events can include
completion or failure of an operation, a user action, or the change in state
of a process.

event processor
The service responsible for managing events through event reader, event

174 Netcool/Impact: DSA Reference Guide

listener and email reader services. The event processor manages the
incoming event queue and is responsible for sending queued events to the
policy engine for processing.

event reader
A service that monitors an event source for new, updated, and deleted
events, and triggers policies based on the event data. See also database
event reader, standard event reader.

event source
A data source that stores and manages events.

exception
A condition or event that cannot be handled by a normal process.

F
field A set of one or more adjacent characters comprising a unit of data in an

event or data item.

filter A device or program that separates data, signals, or material in accordance
with specified criteria. See also LDAP filter, SQL filter.

function
Any instruction or set of related instructions that performs a specific
operation. See also user-defined function.

G
generic event listener

A service that listens to an external data source for incoming events and
triggers policies based on the event data.

graphical user interface (GUI)
A computer interface that presents a visual metaphor of a real-world scene,
often of a desktop, by combining high-resolution graphics, pointing
devices, menu bars and other menus, overlapping windows, icons and the
object-action relationship. See also graphical user interface server.

graphical user interface server (GUI server)
A component that serves the web-based graphical user interface to web
browsers through HTTP. See also graphical user interface.

GUI See graphical user interface.

GUI server
See graphical user interface server.

H
hibernating policy activator

A service that is responsible for waking hibernating policies.

I
instant messaging reader

A service that listens to external instant messaging servers for messages
and triggers policies based on the incoming message data.

Glossary 175

instant messaging service
A service that sends instant messages to instant messaging clients through
a Jabber server.

IPL See Netcool/Impact policy language.

J
Java Database Connectivity (JDBC)

An industry standard for database-independent connectivity between the
Java platform and a wide range of databases. The JDBC interface provides
a call level interface for SQL-based and XQuery-based database access.

Java Message Service (JMS)
An application programming interface that provides Java language
functions for handling messages.

JDBC See Java Database Connectivity.

JMS See Java Message Service.

JMS data source adapter (JMS DSA)
A data source adapter that sends and receives Java Message Service (JMS)
messages.

JMS DSA
See JMS data source adapter.

K
key expression

An expression that specifies the value that one or more key fields in a data
item must have in order to be retrieved in the IPL.

key field
A field that uniquely identifies a data item in a data type.

L
LDAP See Lightweight Directory Access Protocol.

LDAP data source adapter (LDAP DSA)
A data source adapter that reads directory data managed by an LDAP
server. See also Lightweight Directory Access Protocol.

LDAP DSA
See LDAP data source adapter.

LDAP filter
An expression that is used to select data elements located at a point in an
LDAP directory tree. See also filter.

Lightweight Directory Access Protocol (LDAP)
An open protocol that uses TCP/IP to provide access to directories that
support an X.500 model and that does not incur the resource requirements
of the more complex X.500 Directory Access Protocol (DAP). For example,
LDAP can be used to locate people, organizations, and other resources in
an Internet or intranet directory. See also LDAP data source adapter.

link An element of a data model that defines a relationship between data types
and data items. See also dynamic link, static link.

176 Netcool/Impact: DSA Reference Guide

M
mathematic operator

A built-in function that performs a mathematic operation on two values.
The mathematic operators are +, -, *, / and %. See also operator.

mediator DSA
A type of data source adaptor that allows data provided by third-party
systems, devices, and applications to be accessed.

N
Netcool/Impact policy language (IPL)

A programming language used to write policies.

O
operator

A built-in function that assigns a value to a variable, performs an operation
on a value, or specifies how two values are to be compared in a policy. See
also assignment operator, Boolean operator, comparison operator,
mathematic operator, string operator.

P
policy A set of rules and actions that are required to be performed when certain

events or status conditions occur in an environment.

policy activator
A service that runs a specified policy at intervals that the user defines.

policy engine
A feature that automates the tasks that the user specifies in the policy
scripting language.

policy logger
The service that writes messages to the policy log.

POP See Post Office Protocol.

Post Office Protocol (POP)
A protocol that is used for exchanging network mail and accessing
mailboxes.

precision event listener
A service that listens to the application for incoming messages and triggers
policies based on the message data.

S
security manager

A component that is responsible for authenticating user logins.

self-monitoring service
A service that monitors memory and other status conditions and reports
them as events.

server A component that is responsible for maintaining the data model, managing
services, and running policies.

Glossary 177

service
A runnable sub-component that the user controls from within the graphical
user interface (GUI).

Simple Mail Transfer Protocol (SMTP)
An Internet application protocol for transferring mail among users of the
Internet.

Simple Network Management Protocol (SNMP)
A set of protocols for monitoring systems and devices in complex
networks. Information about managed devices is defined and stored in a
Management Information Base (MIB). See also SNMP data source adapter.

SMTP See Simple Mail Transfer Protocol.

SNMP
See Simple Network Management Protocol.

SNMP data source adapter (SNMP DSA)
A data source adapter that allows management information stored by
SNMP agents to be set and retrieved. It also allows SNMP traps and
notifications to be sent to SNMP managers. See also Simple Network
Management Protocol.

SNMP DSA
See SNMP data source adapter.

socket DSA
A data source adaptor that allows information to be exchanged with
external applications using a socket server as the brokering agent.

SQL database DSA
A data source adaptor that retrieves information from relational databases
and other data sources that provide a public interface through Java
Database Connectivity (JDBC). SQL database DSAs also add, modify and
delete information stored in these data sources.

SQL filter
An expression that is used to select rows in a database table. The syntax
for the filter is similar to the contents of an SQL WHERE clause. See also
filter.

standard event reader
A service that monitors a database for new, updated, and deleted events
and triggers policies based on the event data. See also event reader.

static link
An element of a data model that defines a static relationship between data
items in internal data types. See also link.

string concatenation
In REXX, an operation that joins two characters or strings in the order
specified, forming one string whose length is equal to the sum of the
lengths of the two characters or strings.

string operator
A built-in function that performs an operation on two strings. See also
operator.

178 Netcool/Impact: DSA Reference Guide

U
user-defined function

A custom function that can be used to organize code in a policy. See also
function.

V
variable

A representation of a changeable value.

W
web services DSA

A data source adapter that exchanges information with external
applications that provide a web services application programming interface
(API).

X
XML data source adapter

A data source adapter that reads XML data from strings and files, and
reads XML data from web servers over HTTP.

Glossary 179

180 Netcool/Impact: DSA Reference Guide

Index

A
accessibility viii, 167
adding JDBC drivers 9
authentication 59

with plain text password 59

B
books

see publications vii, viii

C
calling WSSetDefaultPKGName 42
categories of DSAs 3
changing character set encoding 10
compiler script

See Web services DSA
compiling WSDL files 34, 36
conventions

typeface xii
Cramer

accessing XML element and attribute
values 161

basic authentication 157
configure Netcool/Impact 162
files 155
retrieving XML data 159
sample implementation 162
sample policies 158
standard policies 163
traversing XML data 160, 161
update ObjectServer 162

Cramer Dimension DSA
setting up 156

Cramer DSA
overview 155

create data types scripts 84
creating a message properties context 78
Creating a socket 150
Creating an event listener service for the

DSA 136
creating message body string or

context 76
creating message properties context 75
creating UI data provider data

sources 19
creating UI data provider data types 20
customer support x
customizing

failover 17

D
data items 30
data model 4, 19, 29
data source 19

Cramer Dimension 157

data source adapter
ITNM 135
JMS 69

data sources 19
JMS 70
LDAP 29
SQL database 10

data type
Cramer Dimension 158
table 111

data type mapping 82
data types 20, 30
DB2 DSA 6
definition of DSAs 3
Derby DSA 6
directory names

notation xii
disability 167
DSA

Cramer 155
Cramer Dimension 157
XML 81

DSAs
categories 3
definition 3
even readers 4
event listeners 4
policies 5

E
Editing the DSA properties file 136
education

See Tivoli technical training
element data types 82
encrypt messages

See Web services security
encryption

See Web services security
environment variables

notation xii
even readers 4
event listeners 4
ExtraInfo field 137

F
failback 16
failover 15

configurations 15
customizing 17
defaults 16
setting up 16
standard 15

fixes
obtaining ix

Flat File DSA 7
function

GetByFilter 138
ReceiveJMSMessage 78

function (continued)
SendJMSMessage 74
SnmpGetAction 121
SnmpGetNextAction 125
SnmpSetAction 128
SNMPTrapAction 131
WSDMGetResourceProperty 64
WSDMInvoke 67
WSDMUpdatetResourceProperty 65
WSInvokeDL 40
WSNewArray 39
WSNewEnum 41
WSNewObject 37
WSNewSubObject 38
WSSetDefaultPKGName 37

functions 36

G
GenericSQL DSA 7
GetByFilter 138
GetByFilter output parameters 21
glossary 173

H
handing incoming messages from a JMS

message listener 79
handling a retrieved message 79
HSQL DSA 7

I
Impact WebServiceListener_login 48
Impact WebServiceListener_login

Response 49
Impact WebServiceListener_run

Policy 49
Impact WebServiceListener_run Policy

Response 50
Informix DSA 7
integration with third party Web

services 53
IPL to XML function

adding new sub element 94
adding the content to XML element

object 97
adding XML attributes element

object 95
adding XML attributes to element

objects 96, 97
adding XML comments element

object 98
adding XML element objects to each

other (nesting) 99
appending content to XML element

object 98
creating unassociated element 95
creating XML document object 94

© Copyright IBM Corp. 2006, 2014 181

IPL to XML function (continued)
generating XML string from document

object 99
IPL to XML functions

default XML entities 100
element ordering 100
examples 100
overview 93
XML entities 100

ITNM DSA data type 137
ITNMSampleListenerPolicy 140
ITNMSamplePolicy 140

J
JMS

data source 70
JMS data source 72
JMS DSA

creating a message properties
context 78

creating message body string or
context 76

creating message properties
context 75

handing incoming messages from a
JMS message listener 79

handling a retrieved message 79
overview 69
retrieving JMS messages from a topic

or queue 77
sending messages to JMS topic or

queue 74
setting up OpenJMS 70
setting up the JMS DSA 69
writing JMS DSA policies 74

JMS DSA policies
writing 74

JNDI properties 72

L
LDAP data sources

creating 29
LDAP DSA

data items 30
data model 29
data types 30
international character support 32
overview 29
policies 31
retrieving data 31
supported LDAP servers 29

Listening for operation requests from the
socket DSA 150

M
manuals

see publications vii, viii
Mediator DSAs 3
message body string or context 76
message integrity

See Web services security
message properties context 75
migrating Web services DSA 34

MS-SQL database DSAs
MS-SQL Server DSA 7

MS-SQL Server DSA 7
MySQL DSA 8

N
non-repudiation

See Web services security
notation

environment variables xii
path names xii
typeface xii

nternational character support
See LDAP DSA

O
ObjectServer DSA 8
obtaining WSDL files 35
ODBC DSA 8
online publications

accessing viii
OpenJMS 70
Oracle DSA 8
ordering publications viii

P
path names

notation xii
Performing handshaking with the

DSA 150
Performing operations requested by the

DSA 152
plain text password

See authentication
policies 5, 31, 42, 46, 63, 74

sample 51
using editor 51
using wizard 50

Policy Variables 140
PostgreSQL DSA 8
problem determination and resolution xi
process 45
publications vii

accessing online viii
ordering viii

R
ReceiveJMSMessage 78
Requesting operation parameters from

the socket DSA 150
retrieving data 23
retrieving JMS messages from a topic or

queue 77
Retrieving packed OID data with SNMP

functions 117
Returning operation results to the

DSA 152
Running the sample socket server 148
runtime parameters 46

S
Sample policies 140
sending messages 42

to JMS topic or queue 74
SendJMSMessage 74
service

JMS message listener 72
setting up

failover 16
JMS DSA 69
Web services listener 45

Setting up the DSA 135
Setting up the sample socket server 146
sign messages

See Web services security
SNMP DSA

data model 105
data sources 105

creating 108
deleting 110
editing 109

data types 106
creating 110
deleting 112
editing 112

functions 121
policies 112
retrieving packed OID data 116
retrieving table data from SNMP

agents 119
sending traps and notifications 120
setting packed OID data with SNMP

functions 116
setting packed OID data with

standard data-handling
functions 113

traversing SNMP trees 118
SnmpGetAction 121
SnmpGetNextAction 125
SnmpSetAction 128
SNMPTrapAction 131
SOAP endpoints 47
socket DSA 141

configuring 143
custom socket servers 149
data model 142
data source 142
data types 142
policies 143
retrieving data by filter 143
retrieving data by key 144
retrieving data by link 145
sample socket server 146
sending data 146

Socket DSA and socket server connection
state 152

socket server 141
Socket server threading 153
Software Support

contacting x
overview ix
receiving weekly updates ix

SQL database DSA 9, 10
SQL database DSAs 5, 6

adding data 13
calling database functions 14
calling stored procedures 15

182 Netcool/Impact: DSA Reference Guide

SQL database DSAs (continued)
customizing failover 17
data items 11
data model 10
data types 11
DB2 DSA 6
deleting data 14
failback 16
failover 15
failover configurations 15
failover defaults 16
Flat File DSA 7
GenericSQL DSA 7
HSQL DSA 7
Informix DSA 7
list of provided 5
modifying data 13
MySQL DSA 8
ObjectServer DSA 8
ODBC DSA 8
Oracle DSA 8
policies 11
PostgreSQL DSA 8
retrieving data 12
setting up failover 16
standard failover 15
Sybase DSA 9

super data types 82
supported LDAP servers 29
Sybase DSA 9

T
Testing the socket server 149
Tivoli Information Center viii
Tivoli technical training viii
training

Tivoli technical viii
typeface conventions xii

U
UI data provider data model 19
UI data provider data source 19
UI data provider data type 20, 21
UI data provider data types 20
UI data provider DSA 19, 20
uidataprovider data source 23

V
variables

notation for xii

W
Waiting for DSA connections 150
Web services distributed manageability

overview 63
writing policies 63

Web services DSA 33
calling WSSetDefaultPKGName 42
compiling WSDL files 34, 36
creating policies using editor 51
creating policies using wizard 50

Web services DSA (continued)
examples 43
functions 36
integration with third party Web

services 53
migrating 34
obtaining WSDL files 35
overview 33
policies 42
running the WSDL compiler

script 35
sample client 51
sample policies 51
sending messages 42
SOAP endpoints 47
Web services listener 45, 46
writing applications that call into Web

services 47
WSDL file 45, 48, 49, 50
WSListenerResult 47

Web services listener
process 45
runtime parameters 46
setting up 45
writing policies 46

Web services security
creating a web service policy 56
enabling 55
encryption 60
message integrity and non-repudiation

with signature 60
sign and encrypt messages 61
user name token authentication 59

writing
Web services listener policies 46

writing applications that call into Web
services 47

Writing policies to receive events from
ITNM 140

Writing policies using the ITNM
DSA 138

WSDL file 45, 48
message 48, 49, 50

WSDM
See Web services distributed

manageability
WSDMGetResourceProperty 64
WSDMInvoke 67
WSDMUpdatetResourceProperty 65
WSInvokeDL 40
WSListenerException 50
WSListenerResult

See Web services DSA
WSNewArray 39
WSNewEnum 41
WSNewObject 37
WSNewSubObject 38
WSSetDefaultPKGName 37

X
XML configuration files 82
XML documents 81
XML DSA

create data types scripts 84
data type mapping 82
overview 81

XML DSA (continued)
reading XML data 87
sample policies 89
XML configuration files 82
XML data types 81, 82

creating 83
setting up mappings 85

XML documents 81
XML DTD files 81
XML mapping 82
XML XSD files 81

XML DTD files 81
XML XSD files 81

Index 183

184 Netcool/Impact: DSA Reference Guide

IBM®

Printed in USA

SC27-4852-01

	Contents
	DSA Reference Guide
	Intended audience
	Publications
	Netcool/Impact library
	Accessing terminology online
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Support for problem solving
	Obtaining fixes
	Receiving weekly support updates
	Contacting IBM Software Support
	Determining the business impact
	Describing problems and gathering information
	Submitting problems

	Conventions used in this publication
	Typeface conventions
	Operating system-dependent variables and paths

	Chapter 1. DSAs overview
	Chapter 2. Data source adapters (DSA)
	Categories of DSAs
	Mediator DSAs

	Managing data models
	Event readers
	Event listeners
	Policies
	Working with SQL database DSAs
	List of provided SQL database DSAs
	DB2 DSA
	Derby DSA
	Flat File DSA
	Generic SQL DSA
	HSQLDB DSA
	Informix DSA
	MS-SQL Server DSA
	MySQL DSA
	ObjectServer DSA
	ODBC DSA
	Oracle DSA
	PostgreSQL DSA
	Sybase DSA

	Adding JDBC drivers and third-party JAR files to the shared library
	Changing the character set encoding for the database connection
	SQL database data model
	SQL database data sources
	SQL database data types
	SQL database data items

	SQL database policies
	Retrieving data from an SQL database data source
	Adding data to an SQL database data source
	Modifying data stored in an SQL database data source
	Deleting data stored in an SQL database data source
	Calling database functions
	Calling database stored procedures

	SQL database DSA failover
	SQL database DSA failover modes
	Setting up DSA failover
	DSA failover defaults
	Customizing DSA failover

	Chapter 3. Working with the UI data provider DSA
	UI data provider data model
	UI data provider data sources
	Creating a UI data provider data source

	UI data provider data types
	Creating a UI data provider data type

	Viewing data items for a UI data provider data type
	Using the GetByFilter function to handle large data sets

	Retrieving data from a UI provider data source
	Creating custom schema values for output parameters

	UI data provider operators

	Chapter 4. Working with the LDAP DSA
	LDAP DSA overview
	Supported LDAP servers
	LDAP data model
	LDAP data sources
	LDAP data types
	LDAP data items

	LDAP policies
	Retrieving data from an LDAP data source
	International character support

	Chapter 5. Working with the web services DSA
	Web services DSA overview
	Migrating web services DSA
	Compiling WSDL files
	Obtaining WSDL files
	Running the WSDL compiler script

	Recompiling new and changed WSDL files
	Compiling WSDL files on Windows platforms
	Web services DSA functions
	WSSetDefaultPKGName
	WSNewObject
	WSNewSubObject
	WSNewArray
	WSInvokeDL
	WSNewEnum

	Writing Web services DSA policies
	Sending messages
	Calling WSSetDefaultPKGName

	Examples using web services DSA functions

	Web services listener
	Web services listener process
	WSDL file

	Setting up the web services listener
	Writing web services listener policies
	Runtime parameters
	WSListenerResult

	Writing applications that call into Web services
	SOAP endpoint
	Authentication for the web services listener
	WSDL file
	ImpactWebServiceListener_login
	ImpactWebServiceListener_loginResponse
	ImpactWebServiceListener_runPolicy
	ImpactWebServiceListener_runPolicyResponse
	WSListenerException

	Creating policies by using the web services wizard
	Creating policies by using policy editor
	Sample policy and sample client
	Integration with third-party web services

	Chapter 6. Web services security
	Enabling web services security
	Creating a web service policy using web service security
	User name token authentication
	User name token authentication with a plain text password
	Message integrity and non-repudiation with signature
	Encryption
	Sign and encrypt messages

	Chapter 7. Working with web services and WSDM
	WSDM overview
	Writing WSDM policies
	WSDMGetResourceProperty
	WSDMUpdateResourceProperty
	WSDMInvoke

	Chapter 8. Working with the JMS DSA
	Supported JMS providers
	Configuring JMS DSAs to send and receive JMS messages
	Setting up OpenJMS as the JMS provider
	JMS data source
	JMS data source configuration properties
	Specifying more JNDI properties for the JMS data source

	JMS message listener
	JMS message listener service configuration properties

	Writing JMS DSA policies
	Sending messages to a JMS topic or queue
	SendJMSMessage
	Message properties context
	Creating a message body string or context
	Example of sending a map message to a JMS destination
	Example of sending a text message to a JMS destination

	Retrieving JMS messages from a topic or queue
	ReceiveJMSMessage
	Creating a message properties context
	Handling a retrieved message
	Handling incoming messages from a JMS message listener
	Example of receiving a map message

	Chapter 9. Working with the XML DSA
	XML DSA overview
	XML documents
	XML DTD and XSD files
	XML data types
	Super data types
	Element data types

	XML configuration files
	XML document and data type mapping
	Creating XML data types
	Create data types scripts
	Data type mappings
	Setting up mappings for XML files and strings
	Setting up mappings for XML over HTTP

	Reading XML documents
	Retrieving the document data item
	XML over HTTP

	Retrieving the root level element data item
	Retrieving child element data items
	Accessing attribute values

	Sample policies
	XmlStringTestPolicy
	XmlFileTestPolicy
	XmlHttpTestPolicy
	XmlXsdFileTestPolicy

	Chapter 10. Working with IPL to XML functions
	IPL to XML functions overview
	Creating the XML document object
	Adding a sub element
	Creating an unassociated element
	Adding XML attributes to element objects, simple approach
	Adding XML attributes to element objects that use Attribute objects
	Adding XML attributes to element objects adding attributes from an OrgNode
	Adding the content to an XML element object
	Appending content to XML element objects
	Adding XML comments to element objects
	Adding XML element objects to each other (nesting)
	Generating XML strings from document objects
	Replacement of default XML entities
	Element ordering in XML
	Examples of IPLtoXML functions usage

	Chapter 11. Working with the SNMP DSA
	SNMP DSA overview
	SNMP data model
	SNMP data sources
	SNMP data types
	Packed OID data types
	Table data types

	SNMP DSA process
	Sending data to agents
	Retrieving data from agents
	Sending traps and notifications to managers
	Handling error conditions
	Handling timeouts

	Installing MIB files
	Working with SNMP data sources
	Creating SNMP data sources
	Creating SNMP v1 and v2 data sources
	Creating SNMP v3 data sources

	Editing SNMP data sources
	Deleting an SNMP data source

	Working with SNMP data types
	Creating SNMP data types
	Creating packed OID data types
	Creating table data types

	Editing SNMP data types
	Deleting SNMP data types

	SNMP policies
	Setting packed OID data with standard data-handling functions
	Setting the value of a single variable
	Setting the value of multiple variables

	Setting packed OID data with SNMP functions
	Retrieving packed OID data from SNMP agents
	Retrieving packed OID data with standard data-Handling functions
	Retrieving packed OID data with SNMP functions
	Traversing SNMP trees

	Retrieving table data from SNMP agents
	Retrieving table data with standard data-handling functions

	Sending SNMP traps and notifications

	SNMP functions
	SnmpGetAction
	SnmpGetNextAction
	SnmpSetAction
	SnmpTrapAction

	Chapter 12. Working with the ITNM DSA
	ITNM DSA overview
	Setting up the DSA
	Editing the DSA properties file
	Running the ITNM event listener service for the DSA

	ITNM DSA data type
	ExtraInfo field

	Writing policies using the ITNM DSA
	GetByFilter
	Writing policies to receive events from ITNM
	Policy Variables

	Sample policies
	ITNMSampleListenerPolicy
	ITNMSamplePolicy

	Chapter 13. Working with the socket DSA
	Socket DSA overview
	Socket server
	Data model
	Process
	Setting up the socket DSA
	Writing socket DSA policies
	Using the sample socket server
	Implementing a custom socket server
	Socket DSA data model
	Socket DSA data source
	Socket DSA data types

	Configuring the socket DSA
	Writing socket DSA policies
	Retrieving data by filter
	Retrieving data by key
	Retrieving data By links
	Sending data

	Working with the sample socket server
	Setting up the sample socket server
	Sample socket server components
	Server.pl
	UserDataInterface.pm

	Running the sample socket server
	Testing the socket server

	Implementing a custom socket server
	Creating a socket
	Waiting for DSA connections
	Performing handshaking with the DSA
	Listening for operation requests from the socket DSA
	Requesting operation parameters from the socket DSA
	Performing operations requested by the DSA
	Returning operation results to the DSA

	Socket DSA and socket server connection state
	Socket server threading

	Chapter 14. Working with the Cramer DSA
	Cramer Dimension DSA overview
	Files used with the Cramer Dimension DSA
	Setting up the Cramer Dimension DSA
	Configuring Cramer System to use basic authentication
	Cramer Dimension data model
	Cramer Dimension data source
	Cramer Dimension data types

	Cramer Dimension policies
	Retrieving XML Data from Cramer Dimension
	Using GetByLinks to traverse the XML data
	Using the Embedded Linking Syntax to traverse the XML data
	Accessing XML element and attribute values

	Sample Implementation
	Updating the ObjectServer
	Configuring Netcool/Impact
	DSA for Cramer Dimension Standard Policies

	Appendix A. Accessibility
	Appendix B. Notices
	Trademarks

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	S
	U
	V
	W
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

